1
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
2
|
Lei Z, He J, Yang H, Zhang L, Lai T, Zhou L, Tang Z, Sui J, Wu Y. Global profiling of transcriptome, proteome and 2-hydroxyisobutyrylome in radioresistant lung adenocarcinoma cell. BMC Genomics 2024; 25:923. [PMID: 39363283 PMCID: PMC11448304 DOI: 10.1186/s12864-024-10854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Radioresistance contributes to metastasis and recurrence in non-small cell lung cancer (NSCLC) patients. However, the underlying mechanism remains unclear. To provide novel clues, a complete multi-omics map of a radioresistant cancer cell line has been profiled. In this article, a lung adenocarcinoma cell line, radioresistant A549 (RA549), was generated by exposure to a series of irradiation. Subsequently, we adopted transcriptome, quantitative proteome and lysine 2-hydroxyisobutyrylome to construct a differential profile on the transcriptional to post-tanslational levels on A549 and RA549 cell lines, respectively. Our analysis revealed 920 significantly differentially expressed genes and 699 proteins. Furthermore, 2-hydroxyisobutyrylome identified 30,089 Khib modified sites on 4635 proteins, indicating that Khib modifications play vital role in regulating NSCLC radioresistance. Multi-omics combined analysis identified 19 significantly differentially expressed genes/proteins in total. Meanwhile, we found that EGFR, a well-known lung cancer-related receptor, was upregulated at both the protein and Khib modification levels in RA549. Further gain/loss of function experiments showed that Khib modified EGFR level positively correlates with NSCLC cell radioresistance. Taken together, our findings report that Khib-modified proteins enhanced resistance to radiation and represent promising therapeutic targets.
Collapse
Affiliation(s)
- Zheng Lei
- College of Medicine, Chongqing University, Chongqing, 400044, China
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jiang He
- College of Medicine, Chongqing University, Chongqing, 400044, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haonan Yang
- College of Medicine, Chongqing University, Chongqing, 400044, China
| | - Lu Zhang
- College of Medicine, Chongqing University, Chongqing, 400044, China
| | - Tangmin Lai
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Liu Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jiangdong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
3
|
Jiang X, Li Y, Liu S, Sun H, Zheng M, Wan X, Zhu W, Feng X. Nanoscale dihydroartemisinin@zeolitic imidazolate frameworks for enhanced antigiardial activity and mechanism analysis. Front Vet Sci 2024; 11:1364287. [PMID: 38751803 PMCID: PMC11094645 DOI: 10.3389/fvets.2024.1364287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
An artificial semisynthetic material can be derived from artemisinin (ART) called dihydroartemisinin (DHA). Although DHA has enhanced antigiardial potential, its clinical application is limited because of its poor selectivity and low solubility. The drug's absorption has a direct impact on the cell, and mechanism research is limited to its destruction of the cytoskeleton. In this study, we used the zeolitic imidazolate framework-8 and loaded it with DHA (DHA@Zif-8) to improve its antigiardial potential. DHA@Zif-8 can enhance cellular uptake, increase antigiardial proliferation and encystation, and expand the endoplasmic reticulum compared with the DHA-treated group. We used RNA sequencing (RNA-seq) to investigate the antigiardial mechanism. We found that 126 genes were downregulated and 123 genes were upregulated. According to the KEGG and GO pathway analysis, the metabolic functions in G. lamblia are affected by DHA@Zif-8 NPs. We used real-time quantitative reverse transcription polymerase chain reaction to verify our results using the RNA-seq data. DHA@Zif-8 NPs significantly enhanced the eradication of the parasite from the stool in vivo. In addition, the intestinal mucosal injury caused by G. lamblia trophozoites markedly improved in the intestine. This research provided the potential of utilizing DHA@Zif-8 to develop an antiprotozoan drug for clinical applications.
Collapse
Affiliation(s)
- Xiaoming Jiang
- College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Yawei Li
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Shuainan Liu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Hongyu Sun
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Meiyu Zheng
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Xi Wan
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Wenhe Zhu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Xianmin Feng
- College of Medicine, Yanbian University, Yanji, Jilin, China
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
4
|
Manciu FS, Guerrero J, Pence BC, Martinez Lopez LV, Das S. Assessment of Drug Activities against Giardia Using Hyperspectral Raman Microscopy. Pathogens 2024; 13:358. [PMID: 38787210 PMCID: PMC11124377 DOI: 10.3390/pathogens13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This study demonstrates the capability of Raman microscopy for detecting structural differences in Giardia cells exposed to different drugs and incubation times. While metronidazole (MTZ) visibly affects the cells by inducing extracellular vesicle releases of toxic iron intermediates and modified triple-bond moieties, oseltamivir (OSM) alters the phenylalanine and lipid structures. Modifications in the heme protein environment and the transformation of iron from ferric to ferrous observed for both drug treatments are more notable for MTZ. Different contents and amounts of vesicle excretion are detected for 24 h or 48 h with MTZ incubation. At a shorter drug exposure, releases of altered proteins, glycogen, and phospholipids dominate. Agglomerates of transformed iron complexes from heme proteins and multiple-bond moieties prevail at 48 h of treatment. No such vesicle releases are present in the case of OSM usage. Drug incorporations into the cells and their impact on the plasma membrane and the dynamics of lipid raft confirmed by confocal fluorescence microscopy reveal a more destructive extent by OSM, corroborating the Raman results. Raman microscopy provides a broader understanding of the multifaceted factors and mechanisms responsible for giardiasis treatment or drug resistance by enabling a label-free, simultaneous monitoring of structural changes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Felicia S. Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jose Guerrero
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
| | - Breanna C. Pence
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| | | | - Siddhartha Das
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
5
|
Zhang N, Wang S, Tian H, Li S, Liu L, Li J, Chen D, Zhao S, Yan X, Niaz M, Zhao L, Ren Y, Chen F. Functions of lysine 2-hydroxyisobutyrylation and future perspectives on plants. Proteomics 2023; 23:e2300045. [PMID: 37338329 DOI: 10.1002/pmic.202300045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel protein post-translational modifications (PTMs) observed in both eukaryotes and prokaryotes. Recent studies suggested that this novel PTM has the potential to regulate different proteins in various pathways. Khib is regulated by lysine acyltransferases and deacylases. This novel PTM reveals interesting connections between modifications and protein physiological functions, including gene transcription, glycolysis and cell growth, enzymic activity, sperm motility, and aging. Here, we review the discovery and the current understanding of this PTM. Then, we outline the networks of complexity of interactions among PTMs in plants, and raise possible directions of this novel PTM for future investigations in plants.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lulu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jiaqi Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Guo D, Zhang J, Han Y, Cui L, Wang H, Wang K, Li P, Deng R, Kang J, Duan Z. Transcriptomic Study on the Lungs of Broilers with Ascites Syndrome. Animals (Basel) 2023; 13:ani13010175. [PMID: 36611783 PMCID: PMC9817706 DOI: 10.3390/ani13010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Although broiler ascites syndrome (AS) has been extensively studied, its pathogenesis remains unclear. The lack of cardiopulmonary function in broilers causes relative hypoxia in the body; hence, the lung is the main target organ of AS. However, the transcriptome of AS lung tissue in broilers has not been studied. In this study, an AS model was successfully constructed, and lung tissues of three AS broilers and three healthy broilers were obtained for RNA sequencing (RNA-seq) and pathological observation. The results showed that 614 genes were up-regulated and 828 genes were down-regulated in the AS group compared with the normal group. Gene Ontology (GO) functional annotation revealed the following up-regulated genes: FABP4, APLN, EIF2AK4, HMOX1, MMP9, THBS1, TLR4, BCL2; and down-regulated genes: APELA, FGF7, WNT5A, CDK6, IL7, IL7R, APLNR. These genes have attracted much attention in cardiovascular diseases such as pulmonary hypertension. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that multiple metabolic processes were enriched, indicating abnormal lung metabolism of AS in broilers. These findings elucidate the potential genes and signal pathways in the lungs of broilers with AS and provide a potential target for studying the pathogenesis and preventing AS.
Collapse
|
7
|
Ni J, Zhang H, Wang X, Liu Z, Nie T, Li L, Su J, Zhu Y, Ma C, Huang Y, Mao J, Gao X, Fan G. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy. Cell Death Dis 2022; 13:1073. [PMID: 36572672 PMCID: PMC9792576 DOI: 10.1038/s41419-022-05516-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
The failing heart is characterized by an increase in glucose uptake and glycolytic rates that is not accompanied by a concomitant increase in glucose oxidation. Lower coupling of glucose oxidation to glycolysis possibly owes to unchanged or reduced pyruvate oxidation in mitochondria. Therefore, increasing pyruvate oxidation may lead to new therapies for heart disease. Dihydrolipoamide dehydrogenase (DLD) is a component of the pyruvate dehydrogenase complex (PDH). DLD mutations or defects are closely associated with metabolic diseases. However, few studies explore the effects of DLD mutants or acylation status on PDH activity and pyruvate metabolism. P300 is protein 2-hydroxyisobutyryltransferases in cells, and P300-dependent lysine 2-hydroxyisobutyrylation of glycolytic enzymes affects glucose metabolism. However, there are no relevant reports on the effect of 2-hydroxyisobutyrylation on the energy metabolism of heart failure, and it is worth further in-depth study. In this study, we showed that 2-hydroxyisobutyrylation is an essential protein translational modification (PTM) that regulates the activity of pyruvate dehydrogenase complex (PDHc). In a mouse model of transverse aortic constriction (TAC)-induced cardiac hypertrophy, the 2-hydroxyisobutylation of DLD was significantly increased, related to the decrease in PDH activity. In addition, our data provide clear evidence that DLD is a direct substrate of P300. As one of the main active ingredients of ginseng, ginsenoside Rg3 (Rg3) can reduce the 2-hydroxyisobutylation levels of DLD and restore the PDH activity by inhibiting the acyltransferase activity of P300, thereby producing beneficial effects whenever the heart is injured. Therefore, this study suggests a novel strategy for reversing myocardial hypertrophy.
Collapse
Affiliation(s)
- Jingyu Ni
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Hao Zhang
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Xiaodan Wang
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Zhihao Liu
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Tong Nie
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lan Li
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Jing Su
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yan Zhu
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Chuanrui Ma
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, 341000 Ganzhou, China
| | - Jingyuan Mao
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Xiumei Gao
- grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Guanwei Fan
- grid.412635.70000 0004 1799 2712National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.412635.70000 0004 1799 2712Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China ,grid.410648.f0000 0001 1816 6218Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| |
Collapse
|
8
|
Application of Proteomics to the Study of the Therapeutics and Pathogenicity of Giardia duodenalis. Diagnostics (Basel) 2022; 12:diagnostics12112744. [DOI: 10.3390/diagnostics12112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Giardia duodenalis remains a neglected tropical disease. A key feature of the sustained transmission of Giardia is the ability to form environmentally resistant cysts. For the last 38 years, proteomics has been utilised to study various aspects of the parasite across different life cycle stages. Thirty-one articles have been published in PubMed from 2012 to 2022 related to the proteomics of G. duodenalis. Currently, mass spectrometry with LC-MS/MS and MALDI-TOF/TOF has been commonly utilised in proteomic analyses of Giardia, which enables researchers to determine potential candidates for diagnostic biomarkers as well as vaccine and drug targets, in addition to allowing them to investigate the virulence of giardiasis, the pathogenicity mechanisms of G. duodenalis, and the post-translational modifications of Giardia proteins throughout encystation. Over the last decade, valuable information from proteomics analyses of G. duodenalis has been discovered in terms of the pathogenesis and virulence of Giardia, which may provide guidance for the development of better means with which to prevent and reduce the impacts of giardiasis. Nonetheless, there is room for improving proteomics analyses of G. duodenalis, since genomic sequences for additional assemblages of Giardia have uncovered previously unknown proteins associated with the Giardia proteome. Therefore, this paper aims to review the applications of proteomics for the characterisation of G. duodenalis pathogenicity and the discovery of novel vaccine as well as drug targets, in addition to proposing some general directions for future Giardia proteomic research.
Collapse
|
9
|
Wu YY, Yang C, Yan HJ, Lu P, Zhang L, Feng WC, Long YS. Lysine acetylome profiling in mouse hippocampus and its alterations upon FMRP deficiency linked to abnormal energy metabolism. J Proteomics 2022; 269:104720. [PMID: 36089189 DOI: 10.1016/j.jprot.2022.104720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.
Collapse
Affiliation(s)
- Yue-Ying Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cui Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Li Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Weng-Cai Feng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
10
|
Zhao Y, Zhang L, Ju C, Zhang X, Huang J. Quantitative multiplexed proteomics analysis reveals reshaping of the lysine 2-hydroxyisobutyrylome in Fusarium graminearum by tebuconazole. BMC Genomics 2022; 23:145. [PMID: 35180840 PMCID: PMC8855566 DOI: 10.1186/s12864-022-08372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered posttranslational modification (PTM) and has been identified in several prokaryotic and eukaryotic organisms. Fusarium graminearum, a major pathogen of Fusarium head blight (FHB) in cereal crops, can cause considerable yield loss and produce various mycotoxins that threaten human health. The application of chemical fungicides such as tebuconazole (TEC) remains the major method to control this pathogen. However, the distribution of Khib in F. graminearum and whether Khib is remodified in response to fungicide stress remain unknown. Results Here, we carried out a proteome-wide analysis of Khib in F. graminearum, identifying the reshaping of the lysine 2-hydroxyisobutyrylome by tebuconazole, using the most recently developed high-resolution LC–MS/MS technique in combination with high-specific affinity enrichment. Specifically, 3501 Khib sites on 1049 proteins were identified, and 1083 Khib sites on 556 modified proteins normalized to the total protein content were changed significantly after TEC treatment. Bioinformatics analysis showed that Khib proteins are involved in a wide range of biological processes and may be involved in virulence and deoxynivalenol (DON) production, as well as sterol biosynthesis, in F. graminearum. Conclusions Here, we provided a wealth of resources for further study of the roles of Khib in the fungicide resistance of F. graminearum. The results enhanced our understanding of this PTM in filamentous ascomycete fungi and provided insight into the remodification of Khib sites during azole fungicide challenge in F. graminearum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08372-4.
Collapse
Affiliation(s)
- Yanxiang Zhao
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Limin Zhang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Chao Ju
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Xiaoyan Zhang
- College of Agriculture, Ludong University, Yantai, 264025, Shandong Province, China
| | - Jinguang Huang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
11
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|