1
|
Kalhor M, Lapin J, Picciani M, Wilhelm M. Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification. Mol Cell Proteomics 2024; 23:100798. [PMID: 38871251 PMCID: PMC11269915 DOI: 10.1016/j.mcpro.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Rescoring of peptide spectrum matches originating from database search engines enabled by peptide property predictors is exceeding the performance of peptide identification from traditional database search engines. In contrast to the peptide spectrum match scores calculated by traditional database search engines, rescoring peptide spectrum matches generates scores based on comparing observed and predicted peptide properties, such as fragment ion intensities and retention times. These newly generated scores enable a more efficient discrimination between correct and incorrect peptide spectrum matches. This approach was shown to lead to substantial improvements in the number of confidently identified peptides, facilitating the analysis of challenging datasets in various fields such as immunopeptidomics, metaproteomics, proteogenomics, and single-cell proteomics. In this review, we summarize the key elements leading up to the recent introduction of multiple data-driven rescoring pipelines. We provide an overview of relevant post-processing rescoring tools, introduce prominent data-driven rescoring pipelines for various applications, and highlight limitations, opportunities, and future perspectives of this approach and its impact on mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mostafa Kalhor
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Joel Lapin
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Plubell DL, Huang E, Spencer SE, Poston K, Montine TJ, MacCoss MJ. Data Independent Acquisition to Inform the Development of Targeted Proteomics Assays Using a Triple Quadrupole Mass Spectrometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596554. [PMID: 38853953 PMCID: PMC11160738 DOI: 10.1101/2024.05.29.596554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mass spectrometry based targeted proteomics methods provide sensitive and high-throughput analysis of selected proteins. To develop a targeted bottom-up proteomics assay, peptides must be evaluated as proxies for the measurement of a protein or proteoform in a biological matrix. Candidate peptide selection typically relies on predetermined biochemical properties, data from semi-stochastic sampling, or by empirical measurements. These strategies require extensive testing and method refinement due to the difficulties associated with prediction of peptide response in the biological matrix of interest. Gas-phase fractionated (GPF) narrow window data-independent acquisition (DIA) aids in the development of reproducible selected reaction monitoring (SRM) assays by providing matrix-specific information on peptide detectability and quantification by mass spectrometry. To demonstrate the suitability of DIA data for selecting peptide targets, we reimplement a portion of an existing assay to measure 98 Alzheimer's disease proteins in cerebrospinal fluid (CSF). Peptides were selected from GPF-DIA based on signal intensity and reproducibility. The resulting SRM assay exhibits similar quantitative precision to published data, despite the inclusion of different peptides between the assays. This workflow enables development of new assays without additional up-front data acquisition, demonstrated here through generation of a separate assay for an unrelated set of proteins in CSF from the same dataset.
Collapse
Affiliation(s)
- Deanna L Plubell
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Eric Huang
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Sandra E Spencer
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Kathleen Poston
- Stanford University, Department of Neurology & Neurological Sciences, Stanford, CA, 94305, USA
| | - Thomas J Montine
- Stanford University, Department of Pathology, Stanford, CA, 94305, USA
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Krawic JR, Ladd NA, Cansler M, McMurtrey C, Devereaux J, Worley A, Ahmed T, Froyd C, Kulicke CA, Swarbrick G, Nilsen A, Lewinsohn DM, Adams EJ, Hildebrand W. Multiple Isomers of Photolumazine V Bind MR1 and Differentially Activate MAIT Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:933-940. [PMID: 38275935 PMCID: PMC10909690 DOI: 10.4049/jimmunol.2300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
In response to microbial infection, the nonclassical Ag-presenting molecule MHC class I-related protein 1 (MR1) presents secondary microbial metabolites to mucosal-associated invariant T (MAIT) cells. In this study, we further characterize the repertoire of ligands captured by MR1 produced in Hi5 (Trichoplusia ni) cells from Mycobacterium smegmatis via mass spectrometry. We describe the (to our knowledge) novel MR1 ligand photolumazine (PL)V, a hydroxyindolyl-ribityllumazine with four isomers differing in the positioning of a hydroxyl group. We show that all four isomers are produced by M. smegmatis in culture and that at least three can induce MR1 surface translocation. Furthermore, human MAIT cell clones expressing distinct TCR β-chains differentially responded to the PLV isomers, demonstrating that the subtle positioning of a single hydroxyl group modulates TCR recognition. This study emphasizes structural microheterogeneity within the MR1 Ag repertoire and the remarkable selectivity of MAIT cell TCRs.
Collapse
Affiliation(s)
- Jason R. Krawic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nicole A. Ladd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Meghan Cansler
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | | | - Jordan Devereaux
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - Aneta Worley
- Research and Development, VA Portland Health Care System, Portland, OR
| | - Tania Ahmed
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Cara Froyd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Corinna A. Kulicke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Gwendolyn Swarbrick
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Aaron Nilsen
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - David M. Lewinsohn
- Research and Development, VA Portland Health Care System, Portland, OR
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
4
|
Lou R, Shui W. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol Cell Proteomics 2024; 23:100712. [PMID: 38182042 PMCID: PMC10847697 DOI: 10.1016/j.mcpro.2024.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Bichmann L, Gupta S, Röst H. Data-Independent Acquisition Peptidomics. Methods Mol Biol 2024; 2758:77-88. [PMID: 38549009 DOI: 10.1007/978-1-0716-3646-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
In recent years, data-independent acquisition (DIA) has emerged as a powerful analysis method in biological mass spectrometry (MS). Compared to the previously predominant data-dependent acquisition (DDA), it offers a way to achieve greater reproducibility, sensitivity, and dynamic range in MS measurements. To make DIA accessible to non-expert users, a multifunctional, automated high-throughput pipeline DIAproteomics was implemented in the computational workflow framework "Nextflow" ( https://nextflow.io ). This allows high-throughput processing of proteomics and peptidomics DIA datasets on diverse computing infrastructures. This chapter provides a short summary and usage protocol guide for the most important modes of operation of this pipeline regarding the analysis of peptidomics datasets using the command line. In brief, DIAproteomics is a wrapper around the OpenSwathWorkflow and relies on either existing or ad-hoc generated spectral libraries from matching DDA runs. The OpenSwathWorkflow extracts chromatograms from the DIA runs and performs chromatographic peak-picking. Further downstream of the pipeline, these peaks are scored, aligned, and statistically evaluated for qualitative and quantitative differences across conditions depending on the user's interest. DIAproteomics is open-source and available under a permissive license. We encourage the scientific community to use or modify the pipeline to meet their specific requirements.
Collapse
Affiliation(s)
- Leon Bichmann
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Shubham Gupta
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hannes Röst
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Yan B, Shi M, Cai S, Su Y, Chen R, Huang C, Chen DDY. Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC-MS/MS. Anal Chem 2023; 95:16558-16566. [PMID: 37906674 DOI: 10.1021/acs.analchem.3c02689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Proteomics provides molecular bases of biology and disease, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a platform widely used for bottom-up proteomics. Data-independent acquisition (DIA) improves the run-to-run reproducibility of LC-MS/MS in proteomics research. However, the existing DIA data processing tools sometimes produce large deviations from true values for the peptides and proteins in quantification. Peak-picking error and incorrect ion selection are the two main causes of the deviations. We present a cross-run ion selection and peak-picking (CRISP) tool that utilizes the important advantage of run-to-run consistency of DIA and simultaneously examines the DIA data from the whole set of runs to filter out the interfering signals, instead of only looking at a single run at a time. Eight datasets acquired by mass spectrometers from different vendors with different types of mass analyzers were used to benchmark our CRISP-DIA against other currently available DIA tools. In the benchmark datasets, for analytes with large content variation among samples, CRISP-DIA generally resulted in 20 to 50% relative decrease in error rates compared to other DIA tools, at both the peptide precursor level and the protein level. CRISP-DIA detected differentially expressed proteins more efficiently, with 3.3 to 90.3% increases in the numbers of true positives and 12.3 to 35.3% decreases in the false positive rates, in some cases. In the real biological datasets, CRISP-DIA showed better consistencies of the quantification results. The advantages of assimilating DIA data in multiple runs for quantitative proteomics were demonstrated, which can significantly improve the quantification accuracy.
Collapse
Affiliation(s)
- Binjun Yan
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mengtian Shi
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyu Cai
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuan Su
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Renhui Chen
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chiyuan Huang
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Gupta S, Sing JC, Röst HL. Achieving quantitative reproducibility in label-free multisite DIA experiments through multirun alignment. Commun Biol 2023; 6:1101. [PMID: 37903988 PMCID: PMC10616189 DOI: 10.1038/s42003-023-05437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
DIA is a mainstream method for quantitative proteomics, but consistent quantification across multiple LC-MS/MS instruments remains a bottleneck in parallelizing data acquisition. One reason for this inconsistency and missing quantification is the retention time shift which current software does not adequately address for runs from multiple sites. We present multirun chromatogram alignment strategies to map peaks across columns, including the traditional reference-based Star method, and two novel approaches: MST and Progressive alignment. These reference-free strategies produce a quantitatively accurate data-matrix, even from heterogeneous multi-column studies. Progressive alignment also generates merged chromatograms from all runs which has not been previously achieved for LC-MS/MS data. First, we demonstrate the effectiveness of multirun alignment strategies on a gold-standard annotated dataset, resulting in a threefold reduction in quantitation error-rate compared to non-aligned DIA results. Subsequently, on a multi-species dataset that DIAlignR effectively controls the quantitative error rate, improves precision in protein measurements, and exhibits conservative peak alignment. We next show that the MST alignment reduces cross-site CV by 50% for highly abundant proteins when applied to a dataset from 11 different LC-MS/MS setups. Finally, the reanalysis of 949 plasma runs with multirun alignment revealed a more than 50% increase in insulin resistance (IR) and respiratory viral infection (RVI) proteins, identifying 11 and 13 proteins respectively, compared to prior analysis without it. The three strategies are implemented in our DIAlignR workflow (>2.3) and can be combined with linear, non-linear, or hybrid pairwise alignment.
Collapse
Affiliation(s)
- Shubham Gupta
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin C Sing
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hannes L Röst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Iravani S, Conrad TOF. An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:151-161. [PMID: 35007196 DOI: 10.1109/tcbb.2022.3141656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other established methods is that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false positive peaks while maintaining a comparable amount of true positives peaks. Code availability: The code is available from the following GIT repository: https://github.com/SaharIravani/DlearnMS.
Collapse
|
9
|
Skoraczyński G, Gambin A, Miasojedow B. Alignstein: Optimal transport for improved LC-MS retention time alignment. Gigascience 2022; 11:giac101. [PMID: 36329619 PMCID: PMC9633278 DOI: 10.1093/gigascience/giac101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Reproducibility of liquid chromatography separation is limited by retention time drift. As a result, measured signals lack correspondence over replicates of the liquid chromatography-mass spectrometry (LC-MS) experiments. Correction of these errors is named retention time alignment and needs to be performed before further quantitative analysis. Despite the availability of numerous alignment algorithms, their accuracy is limited (e.g., for retention time drift that swaps analytes' elution order). RESULTS We present the Alignstein, an algorithm for LC-MS retention time alignment. It correctly finds correspondence even for swapped signals. To achieve this, we implemented the generalization of the Wasserstein distance to compare multidimensional features without any reduction of the information or dimension of the analyzed data. Moreover, Alignstein by design requires neither a reference sample nor prior signal identification. We validate the algorithm on publicly available benchmark datasets obtaining competitive results. Finally, we show that it can detect the information contained in the tandem mass spectrum by the spatial properties of chromatograms. CONCLUSIONS We show that the use of optimal transport effectively overcomes the limitations of existing algorithms for statistical analysis of mass spectrometry datasets. The algorithm's source code is available at https://github.com/grzsko/Alignstein.
Collapse
Affiliation(s)
- Grzegorz Skoraczyński
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| | - Błażej Miasojedow
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Liu Y, Wen H, Chen S, Wang X, Zhu X, Luo L, Wang X, Zhang B. Mass Fabrication of Capillary Columns Based on Centrifugal Packing. Anal Chem 2022; 94:8126-8131. [PMID: 35650662 DOI: 10.1021/acs.analchem.2c00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Packed capillary columns have become the standard front-end separation device for mass spectrometry-based proteomics. The development of simple, fast, and robust capillary column technology, especially that with mass-fabrication capacity, can greatly improve analytical throughput and reproducibility in omics research. In this technical note, we report a centrifugal packing technology, which has the capability to mass fabricate high quality capillary columns with a 2886 columns/day fabrication throughput. The centrifugally packed columns presented significantly improved efficiency (reduced plate height hmin = 1.6, 37%-40% improvement compared with slurry packed columns), advanced kinetic performance limit, and excellent column-to-column reproducibility (2.0% RSD for retention time, 50 columns). Such columns enabled ∼5300 HeLa proteins identified in single-shot proteomic analysis, displaying both intercolumn and inter-run retention time stability (retention time RSD = 0.94% between nine replicates on three columns for probing peptide sequence). The mass-fabrication technology reported in this technical note may support disposable use of high quality chromatographic columns in large-scale bioanalysis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanrong Wen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojuan Wang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xudong Zhu
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | | | | | - Bo Zhang
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Colby SM, Chang CH, Bade JL, Nunez JR, Blumer MR, Orton DJ, Bloodsworth KJ, Nakayasu ES, Smith RD, Ibrahim YM, Renslow RS, Metz TO. DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data. Anal Chem 2022; 94:6130-6138. [PMID: 35430813 PMCID: PMC9047447 DOI: 10.1021/acs.analchem.1c05017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step.
Collapse
Affiliation(s)
- Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Christine H. Chang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jessica L. Bade
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jamie R. Nunez
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Madison R. Blumer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Kent J. Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Ryan S. Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
12
|
Alka O, Shanthamoorthy P, Witting M, Kleigrewe K, Kohlbacher O, Röst HL. DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics. Nat Commun 2022; 13:1347. [PMID: 35292629 PMCID: PMC8924252 DOI: 10.1038/s41467-022-29006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges of data-independent acquisition results and their filtering. Another factor is that the creation of assay libraries for data-independent acquisition analysis and the processing of extracted ion chromatograms have not been automated in metabolomics. Here we present a fully automated open-source workflow for high-throughput metabolomics that combines data-dependent and data-independent acquisition for library generation, analysis, and statistical validation, with rigorous control of the false-discovery rate while matching manual analysis regarding quantification accuracy. Using an experimentally specific data-dependent acquisition library based on reference substances allows for accurate identification of compounds and markers from data-independent acquisition data in low concentrations, facilitating biomarker quantification.
Collapse
Affiliation(s)
- Oliver Alka
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
| | - Premy Shanthamoorthy
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Oliver Kohlbacher
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Hannes L Röst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Department of Computer Science, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Bichmann L, Gupta S, Rosenberger G, Kuchenbecker L, Sachsenberg T, Ewels P, Alka O, Pfeuffer J, Kohlbacher O, Röst H. DIAproteomics: A Multifunctional Data Analysis Pipeline for Data-Independent Acquisition Proteomics and Peptidomics. J Proteome Res 2021; 20:3758-3766. [PMID: 34153189 DOI: 10.1021/acs.jproteome.1c00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-scale data sets. Here we present DIAproteomics, a multifunctional, automated, high-throughput pipeline implemented in the Nextflow workflow management system that allows one to easily process proteomics and peptidomics DIA data sets on diverse compute infrastructures. The central components are well-established tools such as the OpenSwathWorkflow for the DIA spectral library search and PyProphet for the false discovery rate assessment. In addition, it provides options to generate spectral libraries from existing DDA data and to carry out the retention time and chromatogram alignment. The output includes annotated tables and diagnostic visualizations from the statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. DIAproteomics is well documented open-source software and is available under a permissive license to the scientific community at https://www.openms.de/diaproteomics/.
Collapse
Affiliation(s)
- Leon Bichmann
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen 72076, Germany
| | - Shubham Gupta
- Donnelly Center for Biomolecular Research, University of Toronto, Toronto, Ontario ON M5S 3E1, Canada
| | - George Rosenberger
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| | - Leon Kuchenbecker
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Timo Sachsenberg
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Phil Ewels
- Science for Life Laboratory (SciLifeLab), Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oliver Alka
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Julianus Pfeuffer
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Informatics, Freie Universität Berlin, Berlin 14195, Germany.,Zuse Institute Berlin, Berlin 14195, Germany
| | - Oliver Kohlbacher
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Biological and Medical Informatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Hannes Röst
- Donnelly Center for Biomolecular Research, University of Toronto, Toronto, Ontario ON M5S 3E1, Canada
| |
Collapse
|
14
|
Abstract
Data-independent acquisition (DIA) is a powerful method to acquire spectra from all ionized precursors of a sample. Considering the complexity of the highly multiplexed spectral data, sophisticated workflows have been developed to obtain peptides quantification. Here we describe an open-source and easy-to-use workflow to obtain a quantitative matrix from multiple DIA runs. This workflow requires as prior information an "assay library," which contains the MS coordinates of peptides. It consists of OpenSWATH, pyProphet, and DIAlignR software. For the ease of installation and to isolate operating system-related dependency, docker-based containerization is utilized in this workflow.
Collapse
Affiliation(s)
- Shubham Gupta
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Wang S, Li W, Hu L, Cheng J, Yang H, Liu Y. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res 2020; 48:e83. [PMID: 32526036 PMCID: PMC7641313 DOI: 10.1093/nar/gkaa498] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Mass spectrometry (MS)-based quantitative proteomics experiments frequently generate data with missing values, which may profoundly affect downstream analyses. A wide variety of imputation methods have been established to deal with the missing-value issue. To date, however, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics community. Herein, we developed a user-friendly and powerful stand-alone software, NAguideR, to enable implementation and evaluation of different missing value methods offered by 23 widely used missing-value imputation algorithms. NAguideR further evaluates data imputation results through classic computational criteria and, unprecedentedly, proteomic empirical criteria, such as quantitative consistency between different charge-states of the same peptide, different peptides belonging to the same proteins, and individual proteins participating protein complexes and functional interactions. We applied NAguideR into three label-free proteomic datasets featuring peptide-level, protein-level, and phosphoproteomic variables respectively, all generated by data independent acquisition mass spectrometry (DIA-MS) with substantial biological replicates. The results indicate that NAguideR is able to discriminate the optimal imputation methods that are facilitating DIA-MS experiments over those sub-optimal and low-performance algorithms. NAguideR further provides downloadable tables and figures supporting flexible data analysis and interpretation. NAguideR is freely available at http://www.omicsolution.org/wukong/NAguideR/ and the source code: https://github.com/wangshisheng/NAguideR/.
Collapse
Affiliation(s)
- Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Pino LK, Just SC, MacCoss MJ, Searle BC. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Mol Cell Proteomics 2020; 19:1088-1103. [PMID: 32312845 PMCID: PMC7338082 DOI: 10.1074/mcp.p119.001913] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Indexed: 11/06/2022] Open
Abstract
Data independent acquisition (DIA) is an attractive alternative to standard shotgun proteomics methods for quantitative experiments. However, most DIA methods require collecting exhaustive, sample-specific spectrum libraries with data dependent acquisition (DDA) to detect and quantify peptides. In addition to working with non-human samples, studies of splice junctions, sequence variants, or simply working with small sample yields can make developing DDA-based spectrum libraries impractical. Here we illustrate how to acquire, queue, and validate DIA data without spectrum libraries, and provide a workflow to efficiently generate DIA-only chromatogram libraries using gas-phase fractionation (GPF). We present best-practice methods for collecting DIA data using Orbitrap-based instruments and develop an understanding for why DIA using an Orbitrap mass spectrometer should be approached differently than when using time-of-flight instruments. Finally, we discuss several methods for analyzing DIA data without libraries.
Collapse
Affiliation(s)
- Lindsay K Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth C Just
- Proteome Software, Inc. Portland, Oregon, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Brian C Searle
- Institute for Systems Biology, Seattle, Washington, USA.
| |
Collapse
|
17
|
Gupta S, Sing J, Mahmoodi A, Röst H. DrawAlignR: An Interactive Tool for Across Run Chromatogram Alignment Visualization. Proteomics 2020; 20:e1900353. [PMID: 32418354 DOI: 10.1002/pmic.201900353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Multi-run alignment is widely used in proteomics to establish analyte correspondence across runs. Generally alignment algorithms return a cumulative score, which may not be easily interpretable for each peptide. Here a novel and interactive tool for cross-run chromatogram alignment visualization (DrawAlignR) of data-independent acquisition (DIA) data is presented. Furthermore, a novel C++ based implementation of raw chromatogram alignment which is 35 times faster than the previously published algorithm is developed. This not only enables users to plot alignment interactively by DrawAlignR, but also allows other software platforms to use the algorithm. DrawAlignR is an open-source web application using R Shiny that can be hosted using the source-code available at https://github.com/Roestlab/DrawAlignR.
Collapse
Affiliation(s)
- Shubham Gupta
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Justin Sing
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Arshia Mahmoodi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5G 1A8, Canada
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
18
|
Tang J, Fu J, Wang Y, Luo Y, Yang Q, Li B, Tu G, Hong J, Cui X, Chen Y, Yao L, Xue W, Zhu F. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Mol Cell Proteomics 2019; 18:1683-1699. [PMID: 31097671 PMCID: PMC6682996 DOI: 10.1074/mcp.ra118.001169] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
The label-free proteome quantification (LFQ) is multistep workflow collectively defined by quantification tools and subsequent data manipulation methods that has been extensively applied in current biomedical, agricultural, and environmental studies. Despite recent advances, in-depth and high-quality quantification remains extremely challenging and requires the optimization of LFQs by comparatively evaluating their performance. However, the evaluation results using different criteria (precision, accuracy, and robustness) vary greatly, and the huge number of potential LFQs becomes one of the bottlenecks in comprehensively optimizing proteome quantification. In this study, a novel strategy, enabling the discovery of the LFQs of simultaneously enhanced performance from thousands of workflows (integrating 18 quantification tools with 3,128 manipulation chains), was therefore proposed. First, the feasibility of achieving simultaneous improvement in the precision, accuracy, and robustness of LFQ was systematically assessed by collectively optimizing its multistep manipulation chains. Second, based on a variety of benchmark datasets acquired by various quantification measurements of different modes of acquisition, this novel strategy successfully identified a number of manipulation chains that simultaneously improved the performance across multiple criteria. Finally, to further enhance proteome quantification and discover the LFQs of optimal performance, an online tool (https://idrblab.org/anpela/) enabling collective performance assessment (from multiple perspectives) of the entire LFQ workflow was developed. This study confirmed the feasibility of achieving simultaneous improvement in precision, accuracy, and robustness. The novel strategy proposed and validated in this study together with the online tool might provide useful guidance for the research field requiring the mass-spectrometry-based LFQ technique.
Collapse
Affiliation(s)
- Jing Tang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; ¶Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Fu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Li
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiajun Hong
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Cui
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- ‖Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lixia Yao
- **Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905, United States
| | - Weiwei Xue
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
19
|
Kopczynski D, Bittremieux W, Bouyssié D, Dorfer V, Locard-Paulet M, Van Puyvelde B, Schwämmle V, Soggiu A, Willems S, Uszkoreit J. Proceedings of the EuBIC Winter School 2019. EUPA OPEN PROTEOMICS 2019; 22-23:4-7. [PMID: 31890545 PMCID: PMC6924290 DOI: 10.1016/j.euprot.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/29/2023]
Abstract
The 2019 European Bioinformatics Community (EuBIC) Winter School was held from January 15th to January 18th 2019 in Zakopane, Poland. This year's meeting was the third of its kind and gathered international researchers in the field of (computational) proteomics to discuss (mainly) challenges in proteomics quantification and data independent acquisition (DIA). Here, we present an overview of the scientific program of the 2019 EuBIC Winter School. Furthermore, we can already give a small outlook to the upcoming EuBIC 2020 Developer's Meeting.
Collapse
Affiliation(s)
- Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Bunsen-Kirchhoff-Str. 11, D-44139, Dortmund, Germany
| | | | - David Bouyssié
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, UPS, Toulouse, France
| | - Viktoria Dorfer
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | - Marie Locard-Paulet
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen. Denmark1
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Alessio Soggiu
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Sander Willems
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Julian Uszkoreit
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Gesundheitscampus 4, D-44801, Bochum, Germany
| |
Collapse
|