1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Rawat A, Chaube R, Joy KP. Air sac and gill vasotocin receptor gene expression in the air-breathing catfish Heteropneustes fossilis exposed to water and air deprivation conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:381-395. [PMID: 35166960 DOI: 10.1007/s10695-022-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Heteropneustes fossilis is a facultative air-breathing freshwater catfish and inhabits ponds, ditches, swamps, marshes and rivers that dry up in summers. It possesses a pair of unique tubular accessory respiratory organ (air sac), which is a modification of the gill chamber and enables it to live in water-air transition zones. In the catfish, three vasotocin (Vt) receptor gene paralogs viz., v1a1, v1a2 and v2a were identified for Vt actions. In the present study, the receptor gene transcripts were localized in the gill and air sac by in situ hybridization, and their expression levels in relation to water and air deprivation conditions were investigated by quantitative RT-PCR. The catfish were exposed to 1 h and 2 h in gonad inactive (resting) and gonad active (prespawning) phases. The gene paralogs showed overlapping distribution in the respiratory epithelium of primary and secondary lamellae of gills and reduced lamellae of the air sacs. In water deprivation (forced aerial mode of respiration) experiment, v2a expression showed a high fold increase in the air sac, which was unchanged or inhibited in the gill. Both v1a1 and v1a2 expression was significantly upregulated in the air sac but showed varied responses in the gill. The gill v1a1 expression was unchanged in the resting phase and modestly upregulated in the prespawning phase. The gill v1a2 expression was modestly upregulated at 1 h in both phases but unchanged at 2 h. In the air deprivation experiment (forced aquatic respiration), the v2a expression in the air sac was inhibited except for a mild stimulation at 1 h in the prespawning phase. In the gill, the v2a expression was stimulated with a steep upregulation at 2 h in the prespawning phase. Both v1a1 and v1a2 expression was significantly high in the gill but only modestly increased or unchanged in the air sac. The expression patterns point to a functional distinction; the V2 type receptor expression was higher in the air sac during forced aerial respiration, and the V1 type receptor expression was highly prominent in the gill during forced aquatic respiration. Water and air deprivation treatments caused a significant increase in plasma cortisol level, and the stimulation was higher in the water deprivation fish in the resting phase but equally prominent in the water and air deprivation groups in the prespawning phase. The results indicate that the changes in the expression patterns of Vt receptor genes may be a sequel to stress (hypoxic, metabolic and osmotic), and both Vt and cortisol may interact to counter the stress responses. This study shows that Vt has a new role in the control of air sac functions.
Collapse
Affiliation(s)
- A Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
3
|
Maina JN, Icardo JM, Zaccone G, Aragona M, Lauriano ER, Alesci A, Albano M, Guerrera MC, Germana A, Fernandes JMO, Kiron V, Capillo G. Immunohistochemical and ultrastructural study of the immune cell system and epithelial surfaces of the respiratory organs in the bimodally-breathing African sharptooth catfish (Clarias gariepinus Burchell, 1822). Anat Rec (Hoboken) 2022; 305:3212-3229. [PMID: 35142056 DOI: 10.1002/ar.24896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Ach, represents the old neurotransmitter in central and peripheral nervous system. Its muscarinic and nicotinic receptors (mAChRs and nAChRs) constitute an independent cholinergic system that is found in immune cells and playsa key role in regulation of the immune function and cytokine production. Gas exchanging surfaces of the gills and air-breathing organs (ABOs) of the sharptooth catfish Clarias gariepinus were investigated using ultrastructural and confocal immunofluorescence techniques. This study was predominantly focused on the structure of the immune cell types, the expression of their neurotransmitters, including the antimicrobial peptide piscidin 1, and the functional significance of respiratory gas exchange epithelia. A network of immune cells (monocytes, eosinophils, and mast cells) was observed in the gill and theABO epithelia. Eosinophils containing 5HT immunoreactivity were seen in close association with mast cells expressing acetylcholine (Ach), 5HT, nNOS and piscidin 1. A rich and dense cholinergic innervation dispersing across the islet capillaries of the gas exchange barrier, and the localization of Ach in the squamous pavement cells covering the capillaries, were evidenced byVAChT antibodies.We report for the first time that piscidin 1(Pis 1) positive mast cells interact with Pis 1 positive nerves found in the epithelia of the respiratory organs.Pis 1 immunoreactivity was also observed in the covering respiratory epithelium of the ABOs and associated with a role in local mucosal immune defense . The above results anticipate future studies on the neuro-immune interactions at mucosal barrier surfaces, like the gill and the skin of fish, areas densely populated by different immune cells and sensory nerves that constantly sense and adapt to tissue-specific environmental challenges. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John Ndegwa Maina
- Department of Zoology, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | - Antonino Germana
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Gioele Capillo
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Italy.,Institute for Marine Biological Resources and Biotechnology (IRBIM) , National Research Council (CNR), Section of Messina, Messina, Italy
| |
Collapse
|
4
|
Zaccone G, Cupello C, Capillo G, Kuciel M, Nascimento ALR, Gopesh A, Germanà GP, Spanò N, Guerrera MC, Aragona M, Crupi R, Icardo JM, Lauriano ER. Expression of Acetylcholine- and G protein coupled Muscarinic receptor in the Neuroepithelial cells (NECs) of the obligated air-breathing fish, Arapaima gigas (Arapaimatidae: Teleostei). ZOOLOGY 2020; 139:125755. [PMID: 32088527 DOI: 10.1016/j.zool.2020.125755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/18/2023]
Abstract
The air-breathing specialization has evolved idependently in vertebrates, as many different organs can perfom gas exchange. The largest obligate air-breathing fish from South America Arapaima gigas breathe air using its gas bladder, and its dependence on air breathing increases during its growth. During its development, gill morphology shows a dramatic change, remodeling with a gradual reduction of gill lamellae during the transition from water breathing to air breathing . It has been suggested that in this species the gills remain the main site of O2 and CO2 sensing. Consistent with this, we demonstrate for the first time the occurrence of the neuroepithelial cells (NECs) in the glottis, and in the gill filament epithelia and their distal halves. These cells contain a broader spectrum of neurotransmitters (5-HT, acetylcholine, nNOS), G-protein subunits and the muscarininic receptors that are coupled to G proteins (G-protein coupled receptors). We report also for the first time the presence of G alpha proteins coupled with muscarinic receptors on the NECs, that are thought as receptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Based on the specific orientation in the epithelia and their closest vicinity to efferent vasculatures, the gill and glottal NECs of A. gigas could be regarded as potential O2 and CO2 sensing receptors. However, future studies are needed to ascertain the neurophysiological characterization of these cells.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, I-98168 Messina, Italy
| | - Camila Cupello
- Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 20550-900, Rio de Janeiro, Brazil
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy.
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kpernika 15, 30-501 Krakòw, Poland
| | - Ana L R Nascimento
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 20551-030, Rio de Janeiro, Brazil
| | - Anita Gopesh
- Department of Zoology, University of Allahabad, Allahabad 211002, U.P., India
| | - Germana Patrizia Germanà
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, I-98168 Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Poligono de Cazona, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
5
|
Mistri A, Kumari U, Mittal S, Mittal AK. Immunohistochemical localization of nitric oxide synthase (NOS) isoforms in epidermis and gill epithelium of an angler catfish, Chaca chaca (Siluriformes, Chacidae). Tissue Cell 2018; 55:25-30. [DOI: 10.1016/j.tice.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022]
|
6
|
Zaccone G, Maina J, Germanà A, Montalbano G, Capillo G, Aragona L, Kuciel MJ, Lauriano ER, Icardo JM. First demonstration of the neuroepithelial cells and their chemical code in the accessory respiratory organ and the gill of the sharptooth catfish,Clarias gariepinus: A preliminary study. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; Section S.A.S.T.A.S.; University of Messina; Messina Italy
| | - John Maina
- Department of Zoology; University of Johannesburg; Johannesburg South Africa
| | - Antonino Germanà
- Department of Veterinary Sciences; University of Messina; Messina Italy
| | | | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Luisa Aragona
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Michał J. Kuciel
- Poison Information Centre and Laboratory Analysis; Department of Toxicology and Environmental Disease; Faculty of Medicine; Jagiellonian University; Krakow Poland
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - José M. Icardo
- Department of Anatomy and Cell Biology Polıgono de Cazona; Faculty of Medicine; University of Cantabria; Santander Spain
| |
Collapse
|
7
|
Florindo LH, Armelin VA, McKenzie DJ, Rantin FT. Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochem 2018; 120:642-653. [PMID: 30219242 DOI: 10.1016/j.acthis.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review considers the environmental and systemic factors that can stimulate air-breathing responses in fishes with bimodal respiration, and how these may be controlled by peripheral and central chemoreceptors. The systemic factors that stimulate air-breathing in fishes are usually related to conditions that increase the O2 demand of these animals (e.g. physical exercise, digestion and increased temperature), while the environmental factors are usually related to conditions that impair their capacity to meet this demand (e.g. aquatic/aerial hypoxia, aquatic/aerial hypercarbia, reduced aquatic hidrogenionic potential and environmental pollution). It is now well-established that peripheral chemoreceptors, innervated by cranial nerves, drive increased air-breathing in response to environmental hypoxia and/or hypercarbia. These receptors are, in general, sensitive to O2 and/or CO2/H+ levels in the blood and/or the environment. Increased air-breathing in response to elevated O2 demand may also be driven by the peripheral chemoreceptors that monitor O2 levels in the blood. Very little is known about central chemoreception in air-breathing fishes, the data suggest that central chemosensitivity to CO2/H+ is more prominent in sarcopterygians than in actinopterygians. A great deal remains to be understood about control of air-breathing in fishes, in particular to what extent control systems may show commonalities (or not) among species or groups that have evolved air-breathing independently, and how information from the multiple peripheral (and possibly central) chemoreceptors is integrated to control the balance of aerial and aquatic respiration in these animals.
Collapse
Affiliation(s)
- Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil; Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - David John McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR9190 (IRD, Ifremer, UM, CNRS), Université Montpellier, Place Eugène Bataillon cc 093, 34095 Montpellier Cedex 5, France; Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
8
|
Gerber L, Jensen FB, Madsen SS. Dynamic changes in nitric oxide synthase expression are involved in seawater acclimation of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2017; 314:R552-R562. [PMID: 29351430 DOI: 10.1152/ajpregu.00519.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has shown that nitric oxide (NO) produced by nitric oxide synthases (NOS) is an inhibitor of ion transporter activity and a modulator of epithelial ion transport in fish, but little is known on changes in the NOS/NO system during osmotic stress. We hypothesized that the NOS/NO system responds to salinity changes as an integrated part of the acclimation process. Expression and localization of nos1/Nos1 and nos2/Nos2 were investigated in gill, kidney, and intestine of freshwater (FW)- and seawater (SW)-transferred trout using quantitative PCR, Western blotting, and immunohistochemistry, along with expressional changes of major ion transporters in the gill. The classical branchial ion transporters showed expected expressional changes upon SW transfer, there among a rapid decrease in Slc26a6 mRNA, coding a branchial Cl-/[Formula: see text] exchanger. There was a major downregulation of nos1/ nos2/Nos2 expression in the gill during SW acclimation. A significant decrease in plasma nitrite supported an overall decreased Nos activity and NO production. In the middle intestine, Nos1 was upregulated during SW acclimation, whereas no changes in nos/Nos expression were observed in the posterior intestine and the kidney. Nos1 was localized along the longitudinal axis of the gill filament, beneath smooth muscle fibers of the intestine wall and in blood vessel walls of the kidney. Nos2 was localized within the epithelium adjacent to the gill filament axis and in hematopoietic tissues of the kidney. We conclude that downregulation of branchial NOS is integrated to the SW acclimation process likely to avoid the inhibitory effects of NO on active ion extrusion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
9
|
Zaccone G, Lauriano ER, Kuciel M, Capillo G, Pergolizzi S, Alesci A, Ishimatsu A, Ip YK, Icardo JM. Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri. ZOOLOGY 2017; 125:41-52. [PMID: 28830730 DOI: 10.1016/j.zool.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Department of Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical Collage, Kopernika 15, 31-501 Krakow, Poland.
| | - Gioele Capillo
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Atsushi Ishimatsu
- Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213, Japan
| | - Yuen Kwong Ip
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jose M Icardo
- Department of Anatomy and Cell Biology, Polígono de Cazoña, University of Cantabria, 39011 Santander, Spain
| |
Collapse
|
10
|
Zachar PC, Pan W, Jonz MG. Distribution and morphology of cholinergic cells in the branchial epithelium of zebrafish (Danio rerio). Cell Tissue Res 2016; 367:169-179. [DOI: 10.1007/s00441-016-2531-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
11
|
Armelin VA, Braga VHDS, Teixeira MT, Rantin FT, Florindo LH, Kalinin AL. Gill denervation eliminates the barostatic reflex in a neotropical teleost, the tambaqui (Colossoma macropomum). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1213-1224. [PMID: 26932845 DOI: 10.1007/s10695-016-0211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The baroreflex is one of the most important regulators of cardiovascular homeostasis in vertebrates. It begins with the monitoring of arterial pressure by baroreceptors, which constantly provide the central nervous system with afferent information about the status of this variable. Any change in arterial pressure relative to its normal state triggers autonomic responses, which are characterized by an inversely proportional change in heart rate and systemic vascular resistance and which tend to restore pressure normality. Although the baroreceptors have been located in mammals and other terrestrial vertebrates, their location in fish is still not completely clear and remains quite controversial. Thus, the objective of this study was to locate the baroreceptors in a teleost, the Colossoma macropomum. To do so, the occurrence and efficiency of the baroreflex were both analyzed when this mechanism was induced by pressure imbalancements in intact fish (IN), first-gill-denervated fish (G1), and total-gill-denervated fish (G4). The pressure imbalances were initiated through the administration of the α1-adrenergic agonist phenylephrine (100 µg kg(-1)) and the α1-adrenergic antagonist prazosin (1 mg kg(-1)). The baroreflex responses were then analyzed using an electrocardiogram that allowed for the measurement of the heart rate, the relationship between pre- and post-pharmacological manipulation heart rates, the time required for maximum chronotropic baroreflex response, and total heart rate variability. The results revealed that the barostatic reflex was attenuated in the G1 group and nonexistent in G4 group, findings which indicate that baroreceptors are exclusively located in the gill arches of C. macropomum.
Collapse
Affiliation(s)
- Vinicius Araújo Armelin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Mariana Teodoro Teixeira
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil.
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil.
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| |
Collapse
|
12
|
Rimoldi S, Terova G, Zaccone G, Parker T, Kuciel M, Dabrowski K. The Effect of Hypoxia and Hyperoxia on Growth and Expression of Hypoxia-Related Genes and Proteins in Spotted Gar Lepisosteus oculatus Larvae and Juveniles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:250-67. [PMID: 27245617 DOI: 10.1002/jez.b.22680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
We studied the molecular responses to different water oxygen levels in gills and swim bladder of spotted gar (Lepisosteus oculatus), a bimodal breather. Fish at swim-up stage were exposed for 71 days to normoxic, hypoxic, and hyperoxic water conditions. Then, all aquaria were switched to normoxic conditions for recovery until the end of the experiment (120 days). Fish were sampled at the beginning of the experiment, and then at 71 days of exposure and at 8 days of recovery. We first cloned three hypoxia-related genes, hypoxia-inducible factor 2α (HIF-2α), Na(+) /H(+) exchanger 1 (NHE-1), and NHE-3, and uploaded their cDNA sequences in the GeneBank database. We then used One Step Taqman® real-time PCR to quantify the mRNA copies of target genes in gills and swim bladder of fish exposed to different water O2 levels. We also determined the protein expression of HIF-2α and neuronal nitric oxide synthase (nNOS) in the swim bladder by using confocal immunofluorescence. Hypoxic stress for 71 days significantly increased the mRNA copies of HIF-2α and NHE-1 in gills and swim bladder, whereas normoxic recovery for 8 days decreased the HIF-2α mRNA copies to control values in both tissues. We did not found significant changes in mRNA copies of the NHE-3 gene in either gills or swim bladder in response to hypoxia and hyperoxia. Unlike in normoxic swim bladder, double immunohistochemical staining in hypoxic and hyperoxic swim bladder using nNOS/HIF-2α showed extensive bundles of HIF-2α-positive nerve fibers in the trabecular musculature associated with a few varicose nNOS immunoreactive nerve terminals.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| | - Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Tim Parker
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| | - Michal Kuciel
- Poison Information Centre, Jagiellonian University Medical College, Crakow, Poland
| | - Konrad Dabrowski
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Zaccone D, Icardo JM, Kuciel M, Alesci A, Pergolizzi S, Satora L, Lauriano ER, Zaccone G. Polymorphous granular cells in the lung of the primitive fish, the bichirPolypterus senegalus. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology Polígono de Cazoña; Faculty of Medicine; University of Cantabria; s/n 39011 Santander Spain
| | - Michał Kuciel
- Poison Information Centre; Jagiellonian University Medical College; Kopernika 15 31-501 Crakow Poland
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Leszek Satora
- Department of Physiology and Reproduction of Animals; University of Rzeszow; Werynia 502 36-100 Kolbuszowa Rzeszow Poland
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| |
Collapse
|
14
|
An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish. J Comp Physiol B 2015; 186:145-59. [DOI: 10.1007/s00360-015-0949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
15
|
Lauriano ER, Icardo JM, Zaccone D, Kuciel M, Satora L, Alesci A, Alfa M, Zaccone G. Expression patterns and quantitative assessment of neurochemical markers in the lung of the gray bichir, Polypterus senegalus (Cuvier, 1829). Acta Histochem 2015; 117:738-46. [PMID: 26362573 DOI: 10.1016/j.acthis.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Anatomical and functional studies of the autonomic innervation and the putative oxygen receptors-the neuroepithelial (NEC)-like cells of the bichirs are lacking. The present paper describes the distribution of both NEC-like cells and the polymorphous granular cells (PGCs) that populate the mucociliated epithelium of the lung in the air breathing fish Polypterus senegalus. By using confocal immunohistochemistry we determined the coexpression of specific neurochemical markers. Colocalization studies showed that 5HT is coexpressed with calbindin and nNOS in the NEC-like cells and PGCs, and choline acetyltransferase (ChAT) is coexpressed with nNOS in both the two types of cells. Distribution of neurotransmitters (5HT, NO) and neurochemical marker ChAT is also investigated in the lung muscle. The role of these transmitters may be the autonomic control of circulation and respiration. However, the importance of these signals for the respiratory responses in the species studied is still not known. The present study also shows for the first time the simultaneous occurrence of piscidin 1 and 5HT in the PGCs. The function of these cells being equivalent to ones found in fish gill subepithelial parenchyma, is still not known. Due to the importance of piscidin 1 in local immune defense, more research is useful to understand a possible interaction of PGCs with immune response in the bichir lung.
Collapse
|
16
|
Jonz MG, Zachar PC, Da Fonte DF, Mierzwa AS. Peripheral chemoreceptors in fish: A brief history and a look ahead. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:27-38. [DOI: 10.1016/j.cbpa.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
|
17
|
Jonz MG, Buck LT, Perry SF, Schwerte T, Zaccone G. Sensing and surviving hypoxia in vertebrates. Ann N Y Acad Sci 2015; 1365:43-58. [PMID: 25959851 DOI: 10.1111/nyas.12780] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Leslie T Buck
- Cell and Systems Biology, and Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Messina, Italy
| |
Collapse
|
18
|
Porteus CS, Pollack J, Tzaneva V, Kwong RW, Kumai Y, Abdallah SJ, Zaccone G, Lauriano ER, Milsom WK, Perry SF. A role for nitric oxide in the control of breathing in zebrafish (Danio rerio). J Exp Biol 2015; 218:3746-53. [DOI: 10.1242/jeb.127795] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter, which in adult mammals, modulates the acute hypoxic ventilatory response; its role in the control of breathing in fish during development is unknown. We addressed the interactive effects of developmental age and NO in the control of piscine breathing by measuring the ventilatory response of zebrafish (Danio rerio) adults and larvae to NO donors and by inhibiting endogenous production of NO. In adults, sodium nitroprusside (SNP), a NO donor, inhibited ventilation; the extent of the ventilatory inhibition was related to the pre-existing ventilatory drive, with the greatest inhibition exhibited during exposure to hypoxia (PO2=5.6 kPa). Inhibition of endogenous NO production using L-NAME supressed the hypoventilatory response to hyperoxia, supporting an inhibitory role of NO in adult zebrafish. Neuroepithelial cells, the putative oxygen chemoreceptors of fish, contain neuronal nitric oxide synthase (nNOS). In zebrafish larvae at 4 days post fertilization, SNP increased ventilation in a concentration-dependent manner. Inhibition of NOS activity with L-NAME or knockdown of nNOS inhibited the hypoxic (PO2=3.5 kPa) ventilatory response. Immunohistochemistry revealed the presence of nNOS in the NECs of larvae. Taken together, these data suggest that NO plays an inhibitory role in the control ventilation in adult zebrafish, but an excitatory role in larvae.
Collapse
Affiliation(s)
- Cosima S. Porteus
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jacob Pollack
- Department of Biology, University of Ottawa, ON, K1N 6N5, Canada
| | | | | | - Yusuke Kumai
- Department of Biology, University of Ottawa, ON, K1N 6N5, Canada
| | - Sara J. Abdallah
- Department of Biology, University of Ottawa, ON, K1N 6N5, Canada
| | - Giacomo Zaccone
- Department of Food and Environmental Science, Messina University, I-98166, Italy
| | | | - William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Steve F. Perry
- Department of Biology, University of Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
19
|
The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2014; 185:153-71. [DOI: 10.1007/s00360-014-0877-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
20
|
Tzaneva V, Vadeboncoeur C, Ting J, Perry SF. Effects of hypoxia-induced gill remodelling on the innervation and distribution of ionocytes in the gill of goldfish, Carassius auratus. J Comp Neurol 2014; 522:118-30. [PMID: 23818320 PMCID: PMC4241026 DOI: 10.1002/cne.23392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/22/2013] [Accepted: 06/12/2013] [Indexed: 12/03/2022]
Abstract
The presence of an interlamellar cell mass (ILCM) on the gills of goldfish acclimated to 7°C leads to preferential distribution of branchial ionocytes to the distal edges of the ILCM, where they are likely to remain in contact with the water and hence remain functional. Upon exposure to hypoxia, the ILCM retracts, and the ionocytes become localized to the lamellar surfaces and on the filament epithelium, owing to their migration and the differentiation of new ionocytes from progenitor cells. Here we demonstrate that the majority of the ionocytes receive neuronal innervation, which led us to assess the consequences of ionocyte migration and differentiation during hypoxic gill remodelling on the pattern and extent of ionocyte neuronal innervation. Normoxic 7°C goldfish (ILCM present) possessed significantly greater numbers of ionocytes/mm2 (951.2 ± 94.3) than their 25°C conspecifics (ILCM absent; 363.1 ± 49.6) but a statistically lower percentage of innervated ionocytes (83.1% ± 1.0% compared with 87.8% ± 1.3%). After 1 week of exposure of goldfish to hypoxia, the pool of branchial ionocytes was composed largely of pre-existing migrating cells (555.6 ± 38.1/mm2) and to a lesser extent newly formed ionocytes (226.7 ± 15.1/mm2). The percentage of new (relative to pre-existing) ionocytes remained relatively constant (at ∼30%) after 1 or 2 weeks of normoxic recovery. After hypoxia, pre-existing ionocytes expressed a greater percentage of innervation than newly formed ionocytes in all treatment groups; however, their percentage innervation steadily decreased over 2 weeks of normoxic recovery.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | | | | | |
Collapse
|
21
|
Porteus CS, Brink DL, Coolidge EH, Fong AY, Milsom WK. Distribution of acetylcholine and catecholamines in fish gills and their potential roles in the hypoxic ventilatory response. Acta Histochem 2013; 115:158-69. [PMID: 22765871 DOI: 10.1016/j.acthis.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
Abstract
Carotid body glomus cells in mammals contain a plethora of different neurochemicals. Several hypotheses exist to explain their roles in oxygen-chemosensing. In the present study we assessed the distribution of serotonin, acetylcholine and catecholamines in the gills of trout (Oncorhynchus mykiss) and goldfish (Carassius auratus) using immunohistochemistry, and an activity-dependent dye, Texas Red hydrazide (TXR). In fish the putative oxygen sensing cells are neuroepithelial cells (NECs) and the focus in recent studies has been on the role of serotonin in oxygen chemoreception. The NECs of trout and goldfish contain serotonin, but, in contrast to the glomus cells of mammals, not acetylcholine or catecholamines. Acetylcholine was expressed in chain and proximal neurons and in extrinsic nerve bundles in the filaments. The serotonergic NECs did not label with the HNK-1 antibody suggesting that if they are derived from the neural crest, they are no longer proliferative or migrating. Furthermore, we predicted that if serotonergic NECs were chemosensory, they would increase their activity during hypoxia (endocytose TXR), but following 30 min of hypoxic exposure (45 Torr), serotonergic NECs did not take up TXR. Based on these and previous findings we propose several possible models outlining the ways in which serotonin and acetylcholine could participate in oxygen chemoreception in completing the afferent sensory pathway.
Collapse
|
22
|
Porteus CS, Brink DL, Milsom WK. Neurotransmitter profiles in fish gills: putative gill oxygen chemoreceptors. Respir Physiol Neurobiol 2012; 184:316-25. [PMID: 22728948 DOI: 10.1016/j.resp.2012.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
In fish, cells containing serotonin, ACh, catecholamines, NO, H(2)S, leu-5-enkephalin, met-5-enkephalin and neuropeptide Y are found in the gill filaments and lamellae. Serotonin containing neuroepithelial cells (NECs) located along the filament are most abundant and are the only group found in all fish studied to date. The presence of NECs in other locations or containing other transmitters is species specific and it is rare that any one NEC contains more than one neurochemical. The gills are innervated by both extrinsic and intrinsic nerves and they can be cholinergic, serotonergic or contain both transmitters. Some NECs are presumed to be involved in paracrine regulation of gill blood flow, while others part of the reflex pathways involved in cardiorespiratory control. There is both direct and indirect evidence to indicate that the chemosensing cells involved in these latter reflexes sit in locations where some monitor O(2) levels in water, blood or both, yet the anatomical data do not show such clear distinctions.
Collapse
Affiliation(s)
- Cosima S Porteus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | |
Collapse
|
23
|
Zaccone D, Gopesh A, Anastasi G, Favaloro A, Sfacteria A, Marino F. Localization of neurotransmitters, peptides and nNOS in the pseudobranchial neurosecretory cell system and associated carotid labyrinth of the catfish, Clarias batrachus. Acta Histochem 2012; 114:62-7. [PMID: 21397935 DOI: 10.1016/j.acthis.2011.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/10/2011] [Accepted: 02/13/2011] [Indexed: 02/07/2023]
Abstract
The carotid labyrinth is an enigmatic endocrine structure of unknown chemosensory function lying in the gill region of the catfishes. The carotid body is found at the carotid bifurcation of amphibians and all mammalian vertebrates on the evolutionary tree. It is a vascular expansion comprised of a cluster of glomus cells with associated (afferent and efferent) innervations. In the catfish species studied (Clarias batrachus) a neurosecretory cell system consisting of pseudobranchial neurosecretory cells connect the carotid labyrinth or large vessels (both the efferent branchial artery and dorsal aorta), and is likely akin to the glomus cells, but comparing these structures in widely divergent vertebrate species, the conclusion is that the structural components are more elaborate than those of terrestrial vertebrates. However, these cells reveal both an endocrine phenotype (such as the association with capillaries and large vessels) and the presence of regulatory substances such as neurotransmitters and neuropeptides producing good evidence for high levels of conservation of these substances that are present in the glomus cells of mammalian vertebrates. VIP-immunopositive neuronal cell bodies are detected in the periphery of the carotid labyrinth. They are presumptive local neurons that differ from pseudobranchial neurosecretory cells, the latter failing to express VIP in their soma.
Collapse
|
24
|
Brunelli E, Mauceri A, Maisano M, Bernabò I, Giannetto A, De Domenico E, Corapi B, Tripepi S, Fasulo S. Ultrastructural and immunohistochemical investigation on the gills of the teleost, Thalassoma pavo L., exposed to cadmium. Acta Histochem 2011; 113:201-13. [PMID: 19931122 DOI: 10.1016/j.acthis.2009.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
An investigation was conducted to determine the effects of the heavy metal, cadmium (Cd), on the gills of the teleost fish, Thalassoma pavo Linnaeus, 1758. The fishes were exposed to several sublethal concentrations of cadmium (10, 40, 60 and 120 μM (mg/L)) for a period of 48, 96 and 192 h. The value of the LC50 after 96 h of cadmium exposure, determined using the System of Finney, was equal to 128.3 μM. The gills of the fishes were examined by light and electron microscopy. Toxic, apoptotic and cadmium effects were analyzed using some neuropeptides, metallothioneins (MT), caspase 3, PCNA and calmodulin, as bioindicators, respectively. The results showed that the alterations in the gills were proportional to the exposure periods and concentrations of the metal, which were found to be both dose and time dependent. The biological responses in the gills of the tested animals are discussed in relation to results obtained by analysis of the biomarkers. These data may be used for the planning of a model to determine biological risk in the marine environment and may be particularly useful to investigate organisms exposed to cadmium.
Collapse
|
25
|
Gopesh A, Sengar M, Tiwari S. Presence of paraneuronal pseudobranchial neurosecretory system in the gill region of two air-breathing clupeids, Notopterus chitala and Notopterus notopterus. Respir Physiol Neurobiol 2010; 171:135-43. [PMID: 20206306 DOI: 10.1016/j.resp.2010.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 11/15/2022]
Abstract
The pseudobranchial neurosecretory system (PNS) is a system of neurosecretion observed in certain groups of teleosts, which are air-breathing or known to tolerate low oxygen tension in the surrounding water. Like other neuroendocrine cells of gill, cells belonging to this system have also been observed to have a role in condition of hypoxia. Uniformly found in all catfish species, the system was reported to be present in few non-catfish groups also, viz.-Atheriniformes, Channiformes (Devi, 1987), Perciformes, and Clupeiformes (Srivastava et al., 1981; Gopesh, 1983). In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in non-catfish species of teleost, present investigation was undertaken in two species of Notopterus, viz. Notopterus chitala and Notopterus notopterus. The histological observations, using neurosecretion specific stains, undertaken on two clupeids are reported and the findings are discussed in the light of association of PNS with Carotid gland-a structure of intermediate stage in the process of transformation of pseudobranch into the carotid labyrinth, in course of evolution and also the air-breathing habit of the fish.
Collapse
Affiliation(s)
- A Gopesh
- Department of Zoology, University of Allahabad, Allahabad 211002, U.P., India.
| | | | | |
Collapse
|
26
|
Olson KR, Donald JA. Nervous control of circulation--the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 2009; 111:244-56. [PMID: 19128825 DOI: 10.1016/j.acthis.2008.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA.
| | | |
Collapse
|
27
|
Abstract
The fish gill is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervation from both afferent (sensory) and efferent (motor) fibres. Innervation from the latter source includes autonomic nerve fibres of spinal (sympathetic) and cranial (parasympathetic) origin whose primary role is to induce vasomotor changes within the respiratory or nonrespiratory pathways of the gill vasculature. Autonomic control of the gill occurs by nerve fibres identified as adrenergic, cholinergic, and more recent evidence indicates that nonadrenergic-noncholinergic (NANC) nerve fibres, such as those that express amines, peptides, or nitric oxide, may also play an important role. The distribution and physiological function of NANC nerve fibres, however, is less clear. This review primarily discusses histochemical studies that have characterized the nervous innervation and autonomic control of the gill vasculature. In addition, supporting evidence from recent studies for the efferent control, or modulation, of other homeostatic processes in the gill is examined.
Collapse
|
28
|
Perry S, Jonz M, Gilmour K. Chapter 5 Oxygen Sensing And The Hypoxic Ventilatory Response. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00005-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Zaccone G, Mauceri A, Maisano M, Fasulo S. Innervation of lung and heart in the ray-finned fish, bichirs. Acta Histochem 2009; 111:217-29. [PMID: 19121535 DOI: 10.1016/j.acthis.2008.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anatomical and functional studies of the autonomic innervation in the lung and the heart of the bichirs are lacking. The present review paper describes the presence of nerve fibers located in the muscle layers of the lung and its submucosa, the collection of unipolar neurons found in the submucosal and muscle layers of the glottis in a bichir species (Polypterus bichir bichir). Putative oxygen chemoreceptive, neuroepithelial cells (NECs) in the lung mucosa are also included. The latter share many immunohistochemical characteristics similar to those observed in the carotid body and neuroepithelial bodies of mammals. A packed collection of paraganglion cells is located within the trunk of the pulmonary vagus nerves. The paper also examines the occurrence of intracardiac neurons and nerve fibers in the heart of the above species. These studies show that various neurotransmitters may indicate different patterns of innervation in the lung and the heart of the bichirs. However, there is still much to be discovered about the lung and cardiovascular nervous control of these primitive fishes.
Collapse
|
30
|
Zaccone G, Mauceri A, Maisano M, Giannetto A, Parrino V, Fasulo S. Neurotransmitter localization in the neuroepithelial cells and unipolar neurons of the respiratory tract in the bichir, Polypterus bichir bichir G. ST-HIL. Acta Histochem 2008; 110:143-50. [PMID: 18222532 DOI: 10.1016/j.acthis.2007.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 09/06/2007] [Accepted: 09/27/2007] [Indexed: 11/29/2022]
Abstract
Immunohistochemical localisation of neurotransmitters was used to determine the distribution of unipolar neurons and neuroepithelial cells (NECs) in the respiratory tract of the bichir, Polypterus bichir bichir. NECs were commonly encountered in the mucociliated epithelium of the lung. Unipolar neurons were located in the submucosal and muscle layers of the glottis. The results suggest the presence of tyrosine hydroxylase (TH) and nNOS immunoreactivities in NECs. In addition, ACh-E/nNOS and TH/nNOS nerve fibers were also found associated with these cells. Unipolar neuronal cells showed a chemical code including the presence of 5-HT, ACh-E, peptides and P2x2 receptors. The present findings indicate that nitric oxide (NO) is a primitive transmitter of neuroepithelial oxygen-sensitive chemoreceptor cells together with acetylcholine. The coexistence of ACh-E with other substances in the unipolar neurons, but not with NO, may be a property of vagal postganglionic neurons since the emergence of the cranial autonomic pathways in the earliest vertebrates. It would be interesting to know about the provenance of the nerves in contact with NECs, which appear to have a complex innervation pattern.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, Section of Comparative Neurobiology and Biomonitoring, University of Messina, Via Salita Sperone 31, I-98166 Messina, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Nitric oxide and the zebrafish (Danio rerio): Developmental neurobiology and brain neurogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
NO in the development of fish. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Zaccone G, Mauceri A, Maisano M, Giannetto A, Parrino V, Fasulo S. Innervation and Neurotransmitter Localization in the Lung of the Nile bichirPolypterus bichir bichir. Anat Rec (Hoboken) 2007; 290:1166-77. [PMID: 17722050 DOI: 10.1002/ar.20576] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anatomical and functional studies of the autonomic innervation in the lung of dipnoan fishes and the bichirs are lacking. The present immunohistochemical studies demonstrated the presence of nerve fibers in the muscle layers of the lung of the bichir, Polypterus bichir bichir, and identified the immunoreactive elements of this innervation. Tyrosine hydroxylase, acetylcholinesterase, and peptide immunoreactivity was detected in the intramural nerve fibers. Extensive innervation was present in the submucosa where adenylatecyclase/activating polypeptide 38, substance P, P(2)X(2), and 5-hydroxytryptamine (5-HT)-immunoreactive nerve fibers mainly supplied blood vessels. A collection of monopolar neurons located in the submucosal and the muscular layers of the glottis expressed a variety of various transmitters. These neurons may be homologous to ganglion cells in the branchial and pharyngeal rami of the vagus in fishes. Nerves containing 5-HT and P(2)X(2) receptor immunoreactivity projected to the lung epithelium. Associated with neuroepithelial cells in mucociliated epithelium, were neuronal nitric oxide synthase-immunopositive axons. The physiological function of this innervation is not known. The present study shows that the pattern of autonomic innervation of the bichir lung may by similar in its elements to that in tetrapods.
Collapse
Affiliation(s)
- Giacomo Zaccone
- University of Messina, Department of Animal Biology and Marine Ecology, Faculty of Science, Section of Comparative Neurobiology and Biomonitoring, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Zaccone G, Mauceri A, Maisano M, Fasulo S. Immunolocalisation of nitric oxide synthase isoforms in the epidermis of the tiger salamander, Ambystoma tigrinum. Acta Histochem 2006; 108:407-10. [PMID: 16824585 DOI: 10.1016/j.acthis.2006.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/13/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
A. tigrinum: Immunoreactivity for isoforms of nitric oxidase synthase is found in the flash cells and outer-deep epidermal cell layers of the tiger salamander A. tigrinum. Despite the absence of physiological data we assume NO may be lumped together as cytocrine regulators in the amphibian epidermis.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy.
| | | | | | | |
Collapse
|
35
|
Jonz MG, Nurse CA. Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish. J Comp Neurol 2006; 497:817-32. [PMID: 16786554 DOI: 10.1002/cne.21020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Studies of ion regulation by mitochondria-rich cells (MRCs) of transport epithelia in fish have revealed many processes by which ion homeostasis is achieved. However, the control of these mechanisms and, particularly, the extent of nervous system involvement are not completely understood. We characterized the potential innervation of MRCs in various gill and extrabranchial tissues involved in ion transport in the model vertebrate the zebrafish. Confocal and conventional microscopy of whole-mount preparations were combined with immunofluorescence techniques to label MRCs with antibodies against a subunit of the enzyme Na(+)/K(+)-ATPase and nerve fibers with a zebrafish neuronal marker, zn-12. MRCs of the gill filaments were identified by their morphology and migration out to the lamellae in response to ion-poor water acclimation. Gill MRCs were intimately associated with nerve fibers originating from outside the filaments. MRCs of the opercular epithelium resembled those of the gill and were also located adjacent to nerve fibers. Mitochondria-rich "pseudobranch cells" were identified in the pseudobranch by immunofluorescence and labeling of dissociated cells with the mitochondrial marker DASPEI. Pseudobranch MRCs resembled gill MRCs and received innervation from a dense network of nerve fibers. In larvae, MRCs were distributed across the surface of the skin. These cells were situated among a dense network of varicose nerve fibers, and some MRCs of the skin displayed extensive cytoplasmic processes. Evidence is presented suggestive of widespread association of MRCs with the nervous system in transport epithelia and the neural control of MRC-mediated ion regulation in teleost fish.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
36
|
Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH. Neuronal nitric oxide synthase in the gill of the killifish, Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:510-9. [PMID: 16814584 DOI: 10.1016/j.cbpb.2006.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/03/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
Neuronal NOS (nNOS) is a constitutively expressed enzyme that catalyzes the oxidation of L-arginine and water to L-citrulline and the gas nitric oxide (NO). Nitric oxide is involved in regulation of a variety of processes, including: vascular tone, neurotransmission, and ion balance in mammals and fishes. In this study, we have cloned and characterized a putative NOS homologue from the brain of the euryhaline killifish, Fundulus heteroclitus. Killifish NOS has 75% amino acid identity to human nNOS, and phylogenetic analysis groups the killifish sequence with the mammalian nNOS, suggesting that it is a mammalian orthologue. Relative quantitative reverse transcriptase-PCR demonstrated that killifish nNOS mRNA is highly expressed in the brain and gill followed by the stomach, kidney, opercular epithelium, intestine and heart. Immunohistochemistry localized nNOS to nerve fibers and epithelial cells adjacent to mitochondrion-rich cells (ion transporting cell) in the gill, suggesting that nNOS production of NO may contribute to regulation of vascular tone and/or MRC function in the teleost gill.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Zaccone G, Mauceri A, Fasulo S. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes. ACTA ACUST UNITED AC 2006; 305:428-39. [PMID: 16506226 DOI: 10.1002/jez.a.267] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Anatomical and histochemical studies have demonstrated that the bulk of autonomic neurotransmission in fish gill is attributed to cholinergic and adrenergic mechanisms (Nilsson. 1984. In: Hoar WS, Randall DJ, editors. Fish physiology, Vol. XA. Orlando: Academic Press. p 185-227; Donald. 1998. In: Evans DH, editor. The physiology of fishes, 2nd edition. Boca Raton: CRC Press. p 407-439). In many tissues, blockade of adrenergic and cholinergic transmission results in residual responses to nerve stimulation, which are termed NonAdrenergic, NonCholinergic (NANC). The discovery of nitric oxide (NO) has provided a basis for explaining many examples of NANC transmissions with accumulated physiological and pharmacological data indicating its function as a primary NANC transmitter. Little is known about the NANC neurotransmission, and studies on neuropeptides and NOS (Nitric Oxide Synthase) are very fragmentary in the gill and the air-breathing organs of fishes. Knowledge of the distribution of nerves and effects of perfusing agonists may help to understand the mechanisms of perfusion regulation in the gill (Olson. 2002. J Exp Zool 293:214-231). Air breathing as a mechanism for acquiring oxygen has evolved independently in several groups of fishes, necessitating modifications of the organs responsible for the exchange of gases. Aquatic hypoxia in freshwaters has been probably the more important selective force in the evolution of air breathing in vertebrates. Fishes respire with gills that are complex structures with many different effectors and potential control systems. Autonomic innervation of the gill has received considerable attention. An excellent review on branchial innervation includes Sundin and Nilsson's (2002. J Exp Zool 293:232-248) with an emphasis on the anatomy and basic functioning of afferent and efferent fibers of the branchial nerves. The chapters by Evans (2002. J Exp Zool 293:336-347) and Olson (2002) provide new challenges about a variety of neurocrine, endocrine, paracrine and autocrine signals that modulate gill perfusion and ionic transport. The development of the immunohistochemical techniques has led to a new phase of experimentation and to information mainly related to gills rather than air-breathing organs of fishes. During the last few years, identification of new molecules as autonomic neurotransmitters, monoamines and NO, and of their multiple roles as cotransmitters, has reshaped our knowledge of the mechanisms of autonomic regulation of various functions in the organs of teleosts (Donald, '98).NO acts as neurotransmitter and is widely distributed in the nerves and the neuroepithelial cells of the gill, the nerves of visceral muscles of the lung of polypterids, the vascular endothelial cells in the air sac of Heteropneustes fossilis and the respiratory epithelium in the swimbladder of the catfish Pangasius hypophthalmus. In addition, 5-HT, enkephalins and some neuropeptides, such as VIP and PACAP, seem to be NANC transmitter candidates in the fish gill and polypterid lung. The origin and function of NANC nerves in the lung of air-breathing fishes await investigation. Several mechanisms have developed in the Vertebrates to control the flow of blood to respiratory organs. These mechanisms include a local production of vasoactive substances, a release of endocrine hormones into the circulation and neuronal mechanisms. Air breathers may be expected to have different control mechanisms compared with fully aquatic fishes. Therefore, we need to know the distribution and function of autonomic nerves in the air-breathing organs of the fishes.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Section of Cell Biology, Comparative Neurobiolgy and Biomonitoring, Faculty of Science, University of Messina, Italy.
| | | | | |
Collapse
|
38
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
39
|
Mauceri A, Fasulo S, Minniti F, Cascio PL, Maisano M, Zaccone G. Neurochemical features of the innervation of respiratory organs in some air‐breathing fishes. ACTA ACUST UNITED AC 2005. [DOI: 10.1080/11250000509356669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1631] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
41
|
Zaccone G, Mauceri A, Lo Cascio P, Minniti F, Parrino V, Fasulo S. Immunohistochemical study of the innervation of pulmonary vessels and smooth muscles in the respiratory tract of two frog species. Acta Histochem 2004; 106:179-93. [PMID: 15186925 DOI: 10.1016/j.acthis.2003.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 12/02/2003] [Accepted: 12/04/2003] [Indexed: 11/26/2022]
Abstract
The innervation of the respiratory tract of amphibians is still poorly understood. Therefore, the respiratory tracts of the frogs Rana esculenta and Discoglossus pictus have been investigated in order to describe non-adrenergic non-cholinergic (NANC) and adrenergic innervation, and the localization of neuromediators that are possibly involved. Immunohistochemical staining of many bioactive substances was found in neuroepithelial cells of the buccopharynx, larynx, lung septa, nerves and neurons throughout the airway system. The findings indicate the occurrence of vasoactive intestinal peptide (VIP)-immunopositive nerve fibers in fibromuscular septa and the vasculature, nitrergic innervation of the large pulmonary veins showing a plexus of nNOS-immunopositive nerve fibers that also innervate the lung wall and the localization of neuronal nitric oxide synthase (nNOS) in neurons in the lung wall. In addition, laryngeal blood vessels and small arteries in the wall of septa that form capillary networks are supplied by enkephalin-immunopositive nerve terminals. We conclude that the airway system of the two frog species studied is innervated by a parasympathetic NANC system. Adrenergic innervation was also found that was immunostained for tyrosine hydroxylase. Adrenergic fibers were mainly present in muscles in septal edges, arteries present in septa and the wall of the lung. It is suggested that nNOS-positive and leu-enkephalin-positive neurons mediate vasodilation via the release of NO, but the nature of the NANC innervation remains obscure. Despite the many pharmacological studies of the lungs of amphibians, the physiological role of pulmonary autonomic innervation remains poorly understood.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Salita Sperone 31, Messina, S. Agata I-98 166, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Evans DH, Rose RE, Roeser JM, Stidham JD. NaCl transport across the opercular epithelium ofFundulus heteroclitusis inhibited by an endothelin to NO, superoxide, and prostanoid signaling axis. Am J Physiol Regul Integr Comp Physiol 2004; 286:R560-8. [PMID: 14630622 DOI: 10.1152/ajpregu.00281.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that paracrine signaling agents, such as endothelin (ET), nitric oxide (NO), superoxide (O2-), and prostanoids can modulate mammalian renal function by affecting both hemodynamic and epithelial ionic transport pathways. Since these signaling pathways have been described in fish blood vessels, we hypothesized that they may control salt transport across the gill epithelium—the primary site of ion excretion in marine teleost fishes. We found that ET, the NO donors sodium nitroprusside and spermine NONOate, and the prostanoid PGE2each can produce a concentration-dependent reduction in the short circuit current ( Isc) across the isolated opercular epithelium of the killifish ( Fundulus heteroclitus), the generally accepted model for the marine teleost gill epithelium. Sarafotoxin S6c was equipotent to ET-1, suggesting that ETBreceptors are involved. Incubation with NG-nitro-l-arginine methyl ester (l-NAME) or indomethacin reduced the effect of subsequent addition of SRXS6c by 17 and 89%, respectively, suggesting the presence of an ET to NO and PGE axis. The effects of l-NAME and indomethacin were not additive, but the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) reduced the effect of SRXS6c by 34% and preincubation with l-NAME, indomethacin, and TEMPOL reduced the SRXS6c response to zero. This suggests a direct role for O2-in this axis. COX-2 appears to be the major enzyme involved in this axis because the specific COX-2 inhibitor NS-398 was twice as effective as the COX-1 inhibitor SC560 in inhibiting the SRXS6c effect. The Iscwas stimulated by the EP2agonist butaprost and inhibited by the EP1,3agonist sulprostone, suggesting both stimulatory and inhibitory PGE receptors in this tissue. Carbaprostacyclin (PGI2analog), thromboxane A2, PGF2α, and PGD2did not affect the Isc. Our data are the first to suggest the importance of an ET-stimulated and NO-, O2--, and PGE2-mediated signaling axis that can modify active extrusion of NaCl across the killifish opercular epithelium and, by inference, the marine teleost gill epithelium.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|