1
|
Alvarado-Velez M, Enam SF, Mehta N, Lyon JG, LaPlaca MC, Bellamkonda RV. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 2020; 266:120419. [PMID: 33038594 DOI: 10.1016/j.biomaterials.2020.120419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) triggers multiple biochemical and cellular processes that exacerbate brain tissue damage through a secondary injury. Therapies that prevent or limit the evolution of secondary injury could significantly reduce the neurological deficits associated with TBI. Mesenchymal stem cell (MSC) transplantation after TBI can ameliorate neurological deficits by modulating inflammation and enhancing the expression of neurotrophic factors. However, transplanted MSCs can be actively rejected by host immune responses, such as those mediated by cytotoxic CD8+ T cells, thereby limiting their therapeutic efficacy. Here, we designed an agarose hydrogel that releases Fas ligand (FasL), a protein that can induce apoptosis of cytotoxic CD8+ T cells. We studied the immunosuppressive effect of this hydrogel near the allogeneic MSC transplantation site and its impact on the survival of transplanted MSCs in the injured brain. Agarose-FasL hydrogels locally reduced the host cytotoxic CD8+ T cell population and enhanced the survival of allogeneic MSCs transplanted near the injury site. Furthermore, the expression of crucial neurotrophic factors was elevated in the injury penumbra, suggesting an enhanced therapeutic effect of MSCs. These results suggest that the development of immunosuppressive hydrogels for stem cell delivery can enhance the benefits of stem cell therapy for TBI.
Collapse
Affiliation(s)
- Melissa Alvarado-Velez
- Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Syed Faaiz Enam
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nalini Mehta
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Johnathan G Lyon
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Michelle C LaPlaca
- Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ravi V Bellamkonda
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Wang W, Fang K, Wang X, Li M, Wu Y, Chen F, Shahzad KA, Gu N, Shen C. Antigen-Specific Killer Polylactic-Co-Glycolic Acid (PLGA) Microspheres Can Prolong Alloskin Graft Survival in a Murine Model. Immunol Invest 2015; 44:385-99. [DOI: 10.3109/08820139.2015.1014098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
5
|
Leplina OY, Tyrinova TV, Tikhonova MA, Ostanin AA, Chernykh ER. Interferon alpha induces generation of semi-mature dendritic cells with high pro-inflammatory and cytotoxic potential. Cytokine 2014; 71:1-7. [PMID: 25174880 DOI: 10.1016/j.cyto.2014.07.258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023]
Abstract
Dendritic cell-based vaccines are considered as a new and promising immunotherapeutic approach for cancer treatment. However, the choice of optimal protocol of dendritic cell generation in vitro represents the major challenge. Here, we compared phenotype and functional characteristics of human monocyte-derived dendritic cells (DCs) generated in the presence of IL-4/GM-CSF (IL4-DCs) and IFNα/GM-CSF (IFN-DCs). We showed that IFN-DCs displayed semi-mature phenotype and expressed higher level of CD123, TNF-related apoptosis-inducing ligand (TRAIL) and B7-H1 molecules in comparison with IL4-DCs. LPS-stimulated IFN-DCs were characterized by greater production of Th1/pro-inflammatory (IFN-γ, IL-2, IL-1β, TNF-α, IL-17), Тh2/anti-inflammatory cytokines (IL-10, IL-5), hematopoietic growth factors (G-CSF) and chemokines (MCP-1). These data indicated more pronounced ability of IFN-DCs to induce cellular immune response as well as humoral immune response compared to IL4-DCs. LPS-stimulated IFN-DCs possessed higher direct cytotoxic activity against TRAIL-sensitive tumor cell line Jurkat and similar cytotoxicity against TRAIL-resistant tumor HEp-2 cells. Besides, IFN-DCs and IL4-DCs equally induced apoptosis of activated CD4(+) and CD8(+) T cells. These results suggest that IFN-DCs can be used as potent cell-based curative therapies for individuals with cancer.
Collapse
Affiliation(s)
- Olga Yu Leplina
- Institute of Clinical Immunology SB RAMS, 14 Yadrintsevskaya Str., 630099 Novosibirsk, Russia(1)
| | - Tamara V Tyrinova
- Institute of Clinical Immunology SB RAMS, 14 Yadrintsevskaya Str., 630099 Novosibirsk, Russia(1).
| | - Marina A Tikhonova
- Institute of Clinical Immunology SB RAMS, 14 Yadrintsevskaya Str., 630099 Novosibirsk, Russia(1)
| | - Alexander A Ostanin
- Institute of Clinical Immunology SB RAMS, 14 Yadrintsevskaya Str., 630099 Novosibirsk, Russia(1)
| | - Elena R Chernykh
- Institute of Clinical Immunology SB RAMS, 14 Yadrintsevskaya Str., 630099 Novosibirsk, Russia(1)
| |
Collapse
|
6
|
Schütz C, Fleck M, Schneck JP, Oelke M. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells. J Vis Exp 2014:e51859. [PMID: 25145915 PMCID: PMC4710085 DOI: 10.3791/51859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.
Collapse
Affiliation(s)
- Christian Schütz
- Department of Pathology, Institute of Cell Engineering, Johns Hopkins University
| | - Martin Fleck
- Department of Internal Medicine I, University of Regensburg; Department of Rheumatology, Asklepios Medical Center
| | - Jonathan P Schneck
- Department of Pathology, Institute of Cell Engineering, Johns Hopkins University
| | - Mathias Oelke
- Department of Pathology, Institute of Cell Engineering, Johns Hopkins University;
| |
Collapse
|
7
|
Zhao L, Tyrrell DL. Myeloid dendritic cells can kill T cells during chronic hepatitis C virus infection. Viral Immunol 2013; 26:25-39. [PMID: 23374153 DOI: 10.1089/vim.2012.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid dendritic cells (mDCs) are the most potent professional antigen-presenting cells that regulate specific T-cell responses. Here we studied the ability of mDCs to kill T cells during HCV infection. We found that mDCs from chronic hepatitis C (CHC) patients expressed upregulated levels of two inhibitory ligands, Fas ligand and the ligand 2 of PD-1 (PD-L2), compared to healthy mDCs. However, their expression of the ligand 1 of PD-1 (PD-L1), tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and B lymphocyte stimulator (BLyS) on the cell surface was comparable to healthy mDCs. CHC patient mDCs had cytotoxic effects on autologous patient T cells and allogeneic healthy T cells. CHC patient T cells had increased expression of PD-1 compared to healthy T cells. These results indicate that the cytotoxic activity of mDCs is upregulated to kill T cells during chronic HCV infection, which represents a novel mechanism of HCV immune evasion.
Collapse
Affiliation(s)
- Li Zhao
- Li KaShing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, Alberta, Canada.
| | | |
Collapse
|
8
|
Specific immunotherapy of experimental myasthenia gravis in vitro and in vivo: The Guided Missile strategy. J Neuroimmunol 2012; 251:25-32. [DOI: 10.1016/j.jneuroim.2012.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 11/21/2022]
|
9
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|
10
|
Pro- and anti-apoptotic CD95 signaling in T cells. Cell Commun Signal 2011; 9:7. [PMID: 21477291 PMCID: PMC3090738 DOI: 10.1186/1478-811x-9-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.
Collapse
|
11
|
Schütz C, Hoves S, Halbritter D, Zhang HG, Mountz JD, Fleck M. Alloantigen specific deletion of primary human T cells by Fas ligand (CD95L)-transduced monocyte-derived killer-dendritic cells. Immunology 2011; 133:115-22. [PMID: 21342185 DOI: 10.1111/j.1365-2567.2011.03417.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Numerous studies have been performed in vitro and in various animal models to modulate the interaction of dendritic cells (DC) and T cells by Fas (CD95/Apo-1) signalling to delete activated T cells via induction of activation-induced cell death (AICD). Previously, we could demonstrate that Fas ligand (FasL/CD95L)-expressing 'killer-antigen-presenting cells' can be generated from human monocyte-derived mature DC (mDC) using adenoviral gene transfer. To evaluate whether these FasL-expressing mDC (mDC-FasL) could eliminate alloreactive primary human T cells in vitro, co-culture experiments were performed. Proliferation of human T cells was markedly reduced in primary co-cultures with allogeneic mDC-FasL, whereas a strong proliferative T-cell response could be observed in co-cultures with enhanced green fluorescent protein-transduced mDC. Inhibition of T-cell proliferation was related to the transduction efficiency, and the numbers of mDC-FasL present in co-cultures. In addition, proliferation of pre-activated alloreactive CD4(+) and CD8(+) T cells could be almost completely inhibited in secondary co-cultures using mDC-FasL as stimulatory cells, which was the result of induction of apoptosis in the majority of preactivated T cells. The specific deletion of alloreactive T cells by mDC-FasL was confirmed by an unaffected proliferative response of surviving T cells towards allogeneic 'third-party' peripheral blood mononuclear cells in a third stimulation, or upon unspecific stimulation with anti-CD3/CD28 beads. The results of this study demonstrate that allospecifically activated T cells are efficiently eliminated by mDC-FasL, supporting further investigations to apply FasL-expressing 'killer-DC' as a novel strategy for the treatment of allograft rejection.
Collapse
Affiliation(s)
- Christian Schütz
- Department of Internal Medicine 1, University Medical Centre Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Schütz C, Oelke M, Schneck JP, Mackensen A, Fleck M. Killer artificial antigen-presenting cells: the synthetic embodiment of a 'guided missile'. Immunotherapy 2010; 2:539-50. [PMID: 20636007 DOI: 10.2217/imt.10.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Christian Schütz
- Department of Internal Medicine I, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Paulsen M, Valentin S, Mathew B, Adam-Klages S, Bertsch U, Lavrik I, Krammer PH, Kabelitz D, Janssen O. Modulation of CD4+ T-cell activation by CD95 co-stimulation. Cell Death Differ 2010; 18:619-31. [PMID: 21052094 DOI: 10.1038/cdd.2010.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD95 is a dual-function receptor that exerts pro- or antiapoptotic effects depending on the cellular context, the state of activation, the signal threshold and the mode of ligation. In this study, we report that CD95 engagement modulates TCR/CD3-driven signaling pathways in resting T lymphocytes in a dose-dependent manner. While high doses of immobilized CD95 agonists silence T cells, lower concentrations augment activation and proliferation. We analyzed the co-stimulatory capacity of CD95 in detail in resting human CD4(+) T cells, and demonstrate that low-dose ligand-induced co-internalization of CD95 and TCR/CD3 complexes enables non-apoptotic caspase activation, the prolonged activation of MAP kinases, the upregulation of antiapoptotic proteins associated with apoptosis resistance, and the activation of transcription factors and cell-cycle regulators for the induction of proliferation and cytokine production. We propose that the levels of CD95L on antigen-presenting cells (APCs), neighboring T cells or epithelial cells regulate inhibitory or co-stimulatory CD95 signaling, which in turn is crucial for fine-tuning of primary T-cell activation.
Collapse
Affiliation(s)
- M Paulsen
- Christian-Albrechts-University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Strasse 3, Building 17, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phillips B, Giannoukakis N, Trucco M. Dendritic cell-based therapy in Type 1 diabetes mellitus. Expert Rev Clin Immunol 2010; 5:325-39. [PMID: 20477010 DOI: 10.1586/eci.09.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) immunotherapy is a clinical reality. Despite two decades of considerable data demonstrating the feasibility of using DCs to prolong transplant allograft survival and to prevent autoimmunity, only now are these cells entering clinical trials in humans. Type 1 diabetes is the first autoimmune disorder to be targeted for treatment in humans using autologous-engineered DCs. This review will highlight the role of DCs in autoimmunity and the manner in which they have been engineered to treat these disorders in rodent models, either via the induction of immune hyporesponsiveness, which may be cell- and/or antigen-specific, or indirectly by upregulation of other immune cell networks.
Collapse
Affiliation(s)
- Brett Phillips
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA.
| | | | | |
Collapse
|
15
|
Xiong M, Lu J, Zhao A, Xu L, Bao S, Lin Q, Yang B. Therapy with FasL-gene-modified dendritic cells confers a protective microenvironment in murine pregnancy. Fertil Steril 2010; 93:2767-9. [PMID: 20117771 DOI: 10.1016/j.fertnstert.2009.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
Abstract
Analysis of the expression of FasL in the local decidua of pregnant mice and examination of the apoptosis of T cells in peripheral blood and local decidua indicated that adoptive transference of FasL-gene-modified dendritic cells may induce pregnancy immune tolerance by increasing FasL expression in the maternal-fetal interface and inducing the apoptosis of T cells in local decidua but not the peripheral blood.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Gongli Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao A, Xiong M, Zhang Y, Bao S, Zhang J, Qiu L, Lin Q. Adoptive transfer of mFas ligand into dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2 mouse model. Fertil Steril 2009; 93:1700-5. [PMID: 19439286 DOI: 10.1016/j.fertnstert.2009.01.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effect of mFasL dendritic cells (DC) on the embryo resorption rate in the CBA/J x DBA/2 abortion mouse model. DESIGN Experimental study. SETTING University hospital in a major city in China. ANIMAL(S) 101 CBA/J mice and 50 DBA/2 mice. INTERVENTION(S) We constructed the eukaryotic expression vector pcDNA3.1-mFasL, derived the DCs from bone marrow of DBA/2 mice, and transfected the DCs with pcDNA3.1-mFasL. The abortion mouse model were established by mating female CBA/J mice with DBA/2 mice. Via the CBA/J x DBA/2 abortion mouse model, five groups were established: group 1: abortion model without treatment; group 2: abortion mouse model injected with DC culture medium (DCCM); group 3: abortion mouse model injected with DC; group 4: abortion mouse model injected with empty plasmid pcDNA3.1-DC; group 5: abortion model mouse injected with pcDNA3.1-FasL-DC. MAIN OUTCOME MEASURE(S) Comparison of difference in the embryo resorption rates of the CBA/J x DBA/2 abortion mouse model treated with either pcDNA3.1-mFasL-DC or different controls observed on gestation days 12 to 14. RESULT(S) The embryo resorption rate was statistically significantly decreased in group 3 treated with DC and group 4 with empty plasmid pcDNA3.1-DC when they compared with group 1 (no treatment for abortion mouse model) and group 2 (injected with DC culture medium, DCCM). Furthermore, abortion model group 5 (injected with pcDNA3.1-mFasL-DC) showed a statistically significantly decreased in embryo resorption rate when compared with the other four groups, including groups 1 and 2 and groups 3 and group 4. CONCLUSION(S) Adoptive transfer of mFasL-DC can statistically significantly reduce the embryo resorption rate in the CBA/J x DBA/2 abortion mouse model.
Collapse
Affiliation(s)
- Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Spinozzi F, de Benedictis D, de Benedictis FM. Apoptosis, airway inflammation and anti-asthma therapy: from immunobiology to clinical application. Pediatr Allergy Immunol 2008; 19:287-95. [PMID: 18179617 DOI: 10.1111/j.1399-3038.2007.00668.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T lymphocyte apoptosis is essential for maintaining immune system homeostasis. Experimental evidence suggests apoptosis control mechanisms may be impaired in inflammatory conditions, particularly airway Th2-type allergic diseases. This review briefly examines the mucosal immune system homeostasis and common apoptotic pathways and discusses impaired apoptosis, allergy, airway inflammation, remodelling and fibrosis. Finally, the paper presents an update on pharmacological targeting of apoptosis to control airway inflammation in patients with allergic asthma.
Collapse
Affiliation(s)
- Fabrizio Spinozzi
- Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
18
|
Abstract
Several cell-based immunotherapy strategies have been developed to specifically modulate T cell-mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell-based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (kappaaAPCs) by coupling an apoptosis-inducing alpha-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These kappaaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)-dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of kappaaAPCs and independent of activation-induced cell death (AICD). kappaaAPCs represent a novel technology that can control T cell-mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection.
Collapse
|
19
|
Trucco M, Giannoukakis N. Immunoregulatory dendritic cells to prevent and reverse new-onset Type 1 diabetes mellitus. Expert Opin Biol Ther 2007; 7:951-63. [PMID: 17665986 DOI: 10.1517/14712598.7.7.951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herein, the authors provide an overview of where dendritic cells lie in the immunopathology of autoimmune Type 1 diabetes mellitus and how dendritic cell-based therapy may be usefully translated to treat and reverse the disease. The immunopathology of Type 1 diabetes mellitus offers a number of windows at which immunotherapy can be applied to delay, stop and even reverse the autoimmune processes, especially in light of the recent antibody-based accomplishment of improvement in residual beta-cell mass function. As in almost all cell-specific inflammatory processes, dendritic cells are central regulators of diabetes onset and progression. This realisation, along with accumulating data confirming a role for dendritic cells in maintaining and inducing tolerance in multiple therapeutic settings, has prompted a line of investigation to identify the most effective embodiments of dendritic cells for diabetes immunotherapy.
Collapse
Affiliation(s)
- Massimo Trucco
- Children's Hospital of Pittsburgh, Diabetes Institute, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
20
|
Hoves S, Krause SW, Schütz C, Halbritter D, Schölmerich J, Herfarth H, Fleck M. Monocyte-Derived Human Macrophages Mediate Anergy in Allogeneic T Cells and Induce Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2691-8. [PMID: 16888031 DOI: 10.4049/jimmunol.177.4.2691] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of alloreactive T cells by APCs such as dendritic cells (DC) has been implicated as crucial step in transplant rejection. In contrast, it has been proposed that macrophages (Mphi) maintain tolerance toward alloantigens. It was therefore the aim of this study to further analyze the T cell-stimulatory capacity of mature DC and Mphi in vitro using the model of allogeneic MLR. There was a strong proliferative response in T cells cocultured with DC, which was further increased upon restimulation in a secondary MLR. In contrast, T cells did not proliferate in cocultures with Mphi despite costimulation with anti-CD28 and IL-2. Cytokine analysis revealed considerable levels of IL-10 in cocultures of T cells with Mphi, whereas high amounts of IL-2 and IFN-gamma were present in cocultures with DC. There was only minimal T cell proliferation in a secondary MLR when T cells were rescued from primary MLR with Mphi and restimulated with DC of the same donor, or DC of an unrelated donor (third party), whereas a strong primary proliferative response was observed in resting T cells, demonstrating induction of T cell anergy by Mphi. Functional analysis of T cells rescued from cocultures with Mphi demonstrated that anergy was at least partly mediated by IL-10-producing regulatory T cells induced by Mphi. These results demonstrate that Mphi drive the differentiation of regulatory T cells and mediate anergy in allogeneic T cells, supporting the concept that Mphi maintain peripheral tolerance in vivo.
Collapse
Affiliation(s)
- Sabine Hoves
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Bohana-Kashtan O, Civin CI. Fas Ligand as a Tool for Immunosuppression and Generation of Immune Tolerance. Stem Cells 2004; 22:908-24. [PMID: 15536183 DOI: 10.1634/stemcells.22-6-908] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of Fas ligand (FasL) in physiologically limiting immune responses and maintaining immune-privileged sites has led to a body of research aiming to confer protection to allogeneic grafts by expressing FasL on the allogeneic tissue or by administrating FasL-transduced donor dendritic cells. In addition, several studies have used FasL to abrogate autoimmune responses. This review presents the results of these studies and discusses the problems associated with FasL usage.
Collapse
Affiliation(s)
- Osnat Bohana-Kashtan
- Department of Oncology, Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer at Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|