1
|
Strandberg H, Hagströmer CJ, Werin B, Wendler M, Johanson U, Törnroth-Horsefield S. Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins. Int J Mol Sci 2024; 25:7672. [PMID: 39062914 PMCID: PMC11277499 DOI: 10.3390/ijms25147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden; (H.S.); (C.J.H.); (B.W.); (M.W.); (U.J.)
| |
Collapse
|
2
|
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-Induced Cell Death and Survival. Role of α1-Na,K-ATPase-Mediated Signaling and [Na +] i/[K +] i-Dependent Gene Expression. Front Physiol 2020; 11:1060. [PMID: 33013454 PMCID: PMC7498651 DOI: 10.3389/fphys.2020.01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Ouabain is of cardiotonic steroids (CTS) family that is plant-derived compounds and is known for many years as therapeutic and cytotoxic agents. They are specific inhibitors of Na,K-ATPase, the enzyme, which pumps Na+ and K+ across plasma membrane of animal cells. Treatment of cells by CTS affects various cellular functions connected with the maintenance of the transmembrane gradient of Na+ and K+. Numerous studies demonstrated that binding of CTS to Na,K-ATPase not only suppresses its activity but also induces some signal pathways. This review is focused on different mechanisms of two ouabain effects: their ability (1) to protect rodent cells from apoptosis through the expression of [Na+]i-sensitive genes and (2) to trigger death of non-rodents cells (so-called «oncosis»), possessing combined markers of «classic» necrosis and «classic» apoptosis. Detailed study of oncosis demonstrated that the elevation of the [Na+]i/[K+]i ratio is not a sufficient for its triggering. Non-rodent cell death is determined by the characteristic property of "sensitive" to ouabain α1-subunit of Na,K-ATPase. In this case, ouabain binding leads to enzyme conformational changes triggering the activation of p38 mitogen-activated protein kinases (MAPK) signaling. The survival of rodent cells with ouabain-«resistant» α1-subunit is connected with another conformational transition induced by ouabain binding that results in the activation of ERK 1/2 signaling pathway.
Collapse
Affiliation(s)
- Olga Dmitrievna Lopina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Mikhaylovich Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Sergei Nikolaevich Orlov
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Carmosino M, Rizzo F, Procino G, Zolla L, Timperio AM, Basco D, Barbieri C, Torretta S, Svelto M. Identification of moesin as NKCC2-interacting protein and analysis of its functional role in the NKCC2 apical trafficking. Biol Cell 2012; 104:658-76. [PMID: 22708623 DOI: 10.1111/boc.201100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The renal Na(+) -K(+) -2Cl(-) co-transporter (NKCC2) is expressed in kidney thick ascending limb cells, where it mediates NaCl re-absorption regulating body salt levels and blood pressure. RESULTS In this study, we used a well-characterised NKCC2 construct (c-NKCC2) to identify NKCC2-interacting proteins by an antibody shift assay coupled with blue native/SDS-PAGE and mass spectrometry. Among the interacting proteins, we identified moesin, a protein belonging to ezrin, eadixin and moesin family. Co-immunoprecipitation experiments confirmed that c-NKCC2 interacts with the N-terminal domain of moesin in LLC-PK1 cells. Moreover, c-NKCC2 accumulates in intracellular and sub-apical vesicles in cells transfected with a moesin dominant negative green fluorescent protien (GFP)-tagged construct. In addition, moesin knock-down by short interfering RNA decreases by about 50% c-NKCC2 surface expression. Specifically, endocytosis and exocytosis assays showed that moesin knock-down does not affect c-NKCC2 internalisation but strongly reduces exocytosis of the co-transporter. CONCLUSIONS Our data clearly demonstrate that moesin plays a critical role in apical membrane insertion of NKCC2, suggesting a possible involvement of moesin in regulation of Na(+) and Cl(-) absorption in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
New Insights into the Regulation of Na+,K+-ATPase by Ouabain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:99-132. [DOI: 10.1016/b978-0-12-394305-7.00002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 2010; 460:925-52. [PMID: 20686783 DOI: 10.1007/s00424-010-0863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 12/11/2022]
Abstract
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Collapse
|
6
|
Silva E, Soares-da-Silva P. Protein cytoskeleton and overexpression of Na(+),K(+)-ATPase in opossum kidney cells. J Cell Physiol 2009; 221:318-24. [PMID: 19582774 DOI: 10.1002/jcp.21853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have shown that over time in culture opossum kidney (OK) cells are endowed with increased Na(+),K(+)-ATPase activity and expression (Silva et al., 2006, J Membr Biol 212:163-175; Silva and Soares-da-Silva, 2007, Am J Physiol Regul Integr Comp Physiol 293:R1764-R1770). The present work evaluated the cytoskeleton reorganization in OK cells at passages 40 and 80 in culture and its possible relationship with membrane transport proteins and cell morphology. It is shown that OK cells with 80 passages in culture have increased size, internal complexity, and total protein expression. In OK cells with 80 passages in culture the use of in-cell western showed that ezrin/radixin/moesin complex was increased by 20%. The most abundant ankyrin-G isoform in OK cells with 40 passages was the approximately 200/220 kDa isoform, whereas in OK cells with 80 passages the most abundant isoform was the approximately 170 kDa isoform. The spectrin-betaII approximately 240 kDa isoform, the predominant isoform in OK cells with 40 passages, was marginally detected in OK cells with 80 passages. Besides Na(+),K(+)-ATPase, GLUT2, and NHE3 expression was also significantly increased in OK cells with 80 passages. It is concluded that the prolonged cell passaging of OK cells results in an interesting and valuable experimental model to analyze the reorganization of the renal cell cytoskeleton proteins and its relationship with transporter and signaling membrane proteins.
Collapse
Affiliation(s)
- Elisabete Silva
- Faculty of Medicine, Institute of Pharmacology & Therapeutics, Porto, Portugal
| | | |
Collapse
|
7
|
McClatchey AI, Fehon RG. Merlin and the ERM proteins--regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 2009; 19:198-206. [PMID: 19345106 DOI: 10.1016/j.tcb.2009.02.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 11/19/2022]
Abstract
Recent studies highlight the importance of the distribution of membrane receptors in controlling receptor output and in contributing to complex biological processes. The cortical cytoskeleton is known to affect membrane protein distribution but the molecular basis of this is largely unknown. Here, we discuss the functions of Merlin and the ERM proteins both in linking membrane proteins to the underlying cortical cytoskeleton and in controlling the distribution of and signaling from membrane receptors. We also propose a model that could account for the intricacies of Merlin function across model organisms.
Collapse
Affiliation(s)
- Andrea I McClatchey
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
8
|
Meima ME, Mackley JR, Barber DL. Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr Opin Nephrol Hypertens 2007; 16:365-72. [PMID: 17565280 DOI: 10.1097/mnh.0b013e3281bd888d] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The sodium-hydrogen exchanger isoform-1 (NHE1) functions in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Recent studies have revealed the structural functions of NHE1 as an anchor for actin filaments and a scaffold for an ensemble of signaling proteins. This review highlights how these functions contribute to NHE1 regulation of biochemical events and cell behaviors. RECENT FINDINGS New data confirming nontransport structural functions of NHE1 suggest reexamining how NHE1 regulates cell functions. Cell survival, cell substrate adhesion, and organization of the actin cytoskeleton are confirmed to be regulated through actin anchoring by NHE1 and likely by NHE1-dependent scaffolding of signaling proteins. A role for NHE1 in mechanotransduction is emerging and a challenge of future studies is to determine whether structural functions of NHE1 are important for mechanoresponsiveness. SUMMARY This review highlights evidence for the nontransport functions of NHE1 and describes how the structural functions are integrated with ion translocation to regulate a range of cellular processes. Nontransporting features of NHE1 are analogous to recently observed nonconducting actions of ion channels in regulating cell behaviors and represent an emerging paradigm of ion transporters as multifunctional proteins.
Collapse
Affiliation(s)
- Marcel E Meima
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
9
|
Orlov SN, Hamet P. The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i-independent H+i-sensitive signalling. Acta Physiol (Oxf) 2006; 187:231-40. [PMID: 16734760 DOI: 10.1111/j.1748-1716.2006.01546.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Na/K-ATPase is the only known target of cardiotonic steroids (CTS) identified in plants, amphibians and later on in several mammalian species, including human. We focus our review on recent data implicating CTS in the tissue-specific regulation of cell survival and death. In vascular smooth muscle cells, CTS inhibited cell death triggered by apoptotic stimuli via a novel Na+i-mediated, Ca2+i-independent mechanism of expression of antiapoptotic genes, including mortalin. In contrast, exposure to CTS in vascular endothelial and renal epithelial cells led to cell death, showing combined markers of apoptosis and necrosis. This mode of cell death, termed oncosis, is caused by CTS interaction with Na/K-ATPase but is independent of the inhibition of Na/K-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. The intermediates of intracellular signalling involved in Na+i, K+i-independent oncosis of CTS-treated cells remain unknown. Recently, we found that this mode of cell death can be protected by modest intracellular acidification via the expression of H+i-sensitive genes. The molecular origin of intracellular Na+ and H+ sensor involvement in the development of apoptosis and oncosis is currently under investigation.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
10
|
Akimova OA, Lopina OD, Hamet P, Orlov SN. Search for intermediates of Na+,K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. PATHOPHYSIOLOGY 2005; 12:125-35. [PMID: 16023561 DOI: 10.1016/j.pathophys.2005.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 03/08/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that ouabain and other cardiotonic steroids (CTS) kill renal epithelial and vascular endothelial cells via their interaction with the Na+,K+-ATPase alpha-subunit, but independently of elevation of the [Na+]i/[K+]i ratio. In distinct cell types, side-by-side with inhibition of Na+,K+-ATPase-mediated ion fluxes, CTS trigger [Ca2+]i oscillation, activation of Ras, mitogen-activated protein kinases (MAPK), phosphoinositide-3 kinase (PI3K), and protein kinase C as well as the production of reactive oxygen species and cytoskeleton reorganization. This study examined the potential involvement of the above-listed intermediates in death signaling triggered by ouabain in C7-Madin-Darby canine kidney cells. In these cells, twofold decreased staining with dimethylthiazol diphenyltetrazolium (MTT) and detachment of up to 80% of dead cells were detected in 6 and 24 h of ouabain addition, respectively. We did not observe any effect of extra- (EGTA) and intracellular (BAPTA) Ca2+-chelators, [Ca2+]i-raising compounds (thapsigargin, ATP), inhibitors of Ras signaling (alpha-hydroxyfarnesyl-sulphosphoric acid), PI3K (wortmannin), MAPK ERK1/2 kinase (PD98059), tyrosine kinases (genistein) as well as activators (4beta-PMA, 8-Br-cAMP, 8-Br-cGMP, forskolin) and inhibitors (calphostin) of serine-threonine kinases on MTT staining and death of ouabain-treated cells. Ouabain did not affect cellular redox state and the production of superoxide anion and hydroperoxide. Neither N-acetylcysteine nor reduced gluthatione suppressed the death of ouabain-treated cells. Thus, our results show that none of the above-listed signaling systems plays a major role in the development of Nai+,Ki+-independent death machinery triggered by CTS interaction with the Na+,K+-ATPase alpha-subunit.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de Recherche, Centre hospitalier de l'Université de Montréal (CHUM-Hôtel-Dieu), Montreal, Que., H2W 1T7, Canada
| | | | | | | |
Collapse
|
11
|
Khundmiri SJ, Weinman EJ, Steplock D, Cole J, Ahmad A, Baumann PD, Barati M, Rane MJ, Lederer E. Parathyroid hormone regulation of NA+,K+-ATPase requires the PDZ 1 domain of sodium hydrogen exchanger regulatory factor-1 in opossum kidney cells. J Am Soc Nephrol 2005; 16:2598-607. [PMID: 16000700 DOI: 10.1681/asn.2004121049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It was demonstrated that expression of murine sodium hydrogen exchanger regulatory factor (NHERF-1) lacking the ezrin-binding domain blocks parathyroid hormone (PTH) regulation of Na+,K+-ATPase in opossum kidney (OK) cells. The hypothesis that the NHERF-1 PDZ domains contribute to PTH regulation of Na+,K+-ATPase was tested by comparison of PTH regulation of Na+,K+-ATPase in wild-type OK (OK-WT) cells, NHERF-deficient OKH cells, OK-WT transfected with siRNA for NHERF (NHERF siRNA OK-WT), and OKH cells that were stably transfected with full-length NHERF-1 or constructs with mutated PDZ domains. OKH cells and NHERF siRNA OK-WT showed decreased expression of NHERF-1 but equivalent expression of ezrin and Na+,K+-ATPase alpha1 subunit when compared with OK-WT cells. PTH decreased Na+,K+-ATPase activity and stimulated phosphorylation of the Na+,K+-ATPase alpha1 in OK-WT cells but not in NHERF-deficient cells. Rubidium (86Rb) uptake was equivalent in OK-WT, OKH, and OKH cells that were transfected with all but the double PDZ domain mutants. PTH decreased 86Rb uptake significantly in OK-WT but not in OKH cells. PTH also significantly inhibited 86Rb uptake in OKH cells that were transfected with full-length NHERF-1 or NHERF-1 with mutated PDZ 2 but not in OKH cells that were transfected with mutated PDZ 1. Transfection with NHERF expressing both mutated PDZ domains resulted in diminished basal 86Rb uptake that was not inhibited further by PTH. PTH stimulated protein kinase Calpha activity and alpha1 subunit phosphorylation in OK-WT but not in NHERF-deficient cells. Transfection of OKH cells with NHERF constructs that contained an intact PDZ1 domain restored PTH-stimulated protein kinase Calpha activity and alpha1 subunit phosphorylation. These results demonstrate that NHERF-1 is necessary for PTH-mediated inhibition of Na+,K+-ATPase activity and that the inhibition is mediated through the PDZ1, not PDZ2, domain.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Kidney Disease Program, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S. Immunolocalization of protein 4.1B in the rat digestive system. J Mol Histol 2005; 35:347-53. [PMID: 15503808 DOI: 10.1023/b:hijo.0000039848.86488.74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein 4.1 family proteins are thought to interact with membrane proteins and also membrane skeletons. In this study, immunohistochemical studies by light and electron microscopy were performed with a specific antibody against protein 4.1B. Specific protein 4.1B immunolabeling was observed in simple columnar epithelium in the adult rat large intestine, small intestine and stomach. Protein 4.1B immunolabeling was localized along the membranes facing the adjacent cells (lateral portion) and also facing the extracellular matrix (basal portion). Moreover, a spatial protein 4.1B expression gradient was observed along the crypt-villus axis of the rat small and large intestinal epithelium: strong protein 4.1B expression was present within the villus, with the crypt showing barely any detectable protein 4.1B. The expression of protein 4.1B was not detected in the stratified squamous epithelium in the forestomach or the esophagus. By immunoelectron microscopy, the immunolabeling of the cells was observed to be restricted to the cytoplasmic side just beneath the plasma membrane, including the membranes adjacent to the next cells, except for the tight junctions. We conclude that the protein 4.1B expression pattern is related to the maturation of simple columnar epithelium in the rat digestive system, probably by the effect of adhesion.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cereijido M, Contreras RG, Shoshani L. Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiol Rev 2004; 84:1229-62. [PMID: 15383651 DOI: 10.1152/physrev.00001.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporting epithelia posed formidable conundrums right from the moment that Du Bois Raymond discovered their asymmetric behavior, a century and a half ago. It took a century and a half to start unraveling the mechanisms of occluding junctions and polarity, but we now face another puzzle: lest its cells died in minutes, the first high metazoa (i.e., higher than a sponge) needed a transporting epithelium, but a transporting epithelium is an incredibly improbable combination of occluding junctions and cell polarity. How could these coincide in the same individual organism and within minutes? We review occluding junctions (tight and septate) as well as the polarized distribution of Na+-K+-ATPase both at the molecular and the cell level. Junctions and polarity depend on hosts of molecular species and cellular processes, which are briefly reviewed whenever they are suspected to have played a role in the dawn of epithelia and metazoan. We come to the conclusion that most of the molecules needed were already present in early protozoan and discuss a few plausible alternatives to solve the riddle described above.
Collapse
Affiliation(s)
- M Cereijido
- Center For Research and Advanced Studies, Dept. of Physiology, Biophysics, and Neurosciences, Avenida Instituto Politécnico Nacional 2508, Código Postal 07360, México D.F., Mexico.
| | | | | |
Collapse
|