1
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
2
|
Mahfoz AM, Gawish AY. Insight into the hepatoprotective, hypolipidemic, and antidiabetic impacts of aliskiren in streptozotocin-induced diabetic liver disease in mice. Diabetol Metab Syndr 2022; 14:163. [PMID: 36316746 PMCID: PMC9620647 DOI: 10.1186/s13098-022-00935-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Diabetic hepatopathy is a serious complication of poorly controlled diabetes mellitus. An efficient antidiabetic drug which keeps normal liver tissues is not available. The renin-angiotensin system has been reported to be involved in both diabetic state and liver function. Aliskiren is a direct renin inhibitor and a recently antihypertensive drug with poly-pharmacological properties. The aim of the current study is to explore the possible hepatoprotective effects and mechanisms of action of aliskiren against streptozotocin (STZ) induced liver toxicity. METHODS Mice were distributed to 3 groups; first: the normal control group, second: the diabetic control group, third: the diabetic group which received aliskiren (25 mg/kg; oral) for 4 weeks. At the end of the treatment period, plasma glucose, insulin, lipid profile, oxidative stress, and liver function tests were evaluated spectrophotometrically. ELISA technique was used to measure the expression levels of TNF-α and adiponectin. Furthermore, a Histopathological examination of liver samples was done. RESULTS It was shown that aliskiren treatment ameliorated the STZ-induced oxidative stress and elevated inflammatory biomarkers, hypercholesterolemia, serum aminotransferases and alkaline phosphatase levels in diabetic mice. In addition, hepatocellular necrosis, and fibrosis were improved by aliskiren treatment. CONCLUSION aliskiren protects against the liver damage caused by STZ-induced diabetes. This can be explained by its ability to block angiotensin-II, and its anti-diabetic, hypocholesterolemic, antioxidant and anti-inflammatory effects. Aliskiren could be a novel therapeutic strategy to prevent liver diseases associated with hypertension and diabetes mellitus.
Collapse
Affiliation(s)
- Amal M Mahfoz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Aya Y Gawish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
3
|
Hou Y, Ding W, Wu P, Liu C, Ding L, Liu J, Wang X. Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation. Stem Cell Res Ther 2022; 13:132. [PMID: 35365229 PMCID: PMC8973806 DOI: 10.1186/s13287-022-02760-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Type 1 diabetes mellitus (T1D) is a worldwide health priority due to autoimmune destruction and is associated with an increased risk of multiorgan complications. Among these complications, effective interventions for liver injury, which can progress to liver fibrosis and hepatocellular carcinoma, are lacking. Although stem cell injection has a therapeutic effect on T1D, whether it can cure liver injury and the underlying mechanisms need further investigation. Methods Sprague–Dawley rats with streptozotocin (STZ)-induced T1D were treated with adipose-derived stem cell (ADSC) or PBS via the tail vein formed the ADSC group or STZ group. Body weights and blood glucose levels were examined weekly for 6 weeks. RNA-seq and PCR array were used to detect the difference in gene expression of the livers between groups. Results In this study, we found that ADSCs injection alleviated hepatic oxidative stress and injury and improved liver function in rats with T1D; potential mechanisms included cytokine activity, energy metabolism and immune regulation were potentially involved, as determined by RNA-seq. Moreover, ADSC treatment altered the fibroblast growth factor 21 (FGF21) and transforming growth factor β (TGF-β) levels in T1D rat livers, implying its repair capacity. Disordered intracellular energy metabolism, which is closely related to mitochondrial stress and dysfunction, was inhibited by ADSC treatment. PCR array and ingenuity pathway analyses suggested that the ADSC-induced suppression of mitochondrial stress is related to decreased necroptosis and apoptosis. Moreover, mitochondria-related alterations caused liver inflammation, resulting in liver injury involving the T lymphocyte-mediated immune response. Conclusions Overall, these results improve our understanding of the curative effect of ADSCs on T1D complications: ADSCs attenuate liver injury by inhibiting mitochondrial stress (apoptosis and dysfunctional energy metabolism) and alleviating inflammation (inflammasome expression and immune disorder). These results are important for early intervention in liver injury and for delaying the development of liver lesions in patients with T1D. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02760-z.
Collapse
Affiliation(s)
- Yanli Hou
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong First Medical University, Jinan, China
| | - Changqing Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Thymoquinone, the Most Prominent Constituent of Nigella Sativa, Attenuates Liver Damage in Streptozotocin-Induced Diabetic Rats via Regulation of Oxidative Stress, Inflammation and Cyclooxygenase-2 Protein Expression. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus (DM) is a multifaceted metabolic disorder that results in dysfunction and failure of various organs. The present study aimed to evaluate the role of Thymoquinone (TQ), on antidiabetic, oxidative stress, and anti-inflammatory activities in streptozotocin (STZ)-induced (55 mg/kg b.w) diabetic rats. TQ was orally given for 8 consecutive weeks at dose of 150 mg/kg b.w. The blood glucose, insulin, total cholesterol, triglycerides, liver function enzymes, high density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol levels were measured accordingly in control, diabetes control (DC), and TQ-treatment groups. These experiments confirmed that TQ conserves the insulin level (0.4 ng/mL vs. 0.23 ng/mL), fasting blood glucose (146 ± 7 mg/dL vs. 225 ± 5 mg/dL), and HbA1c (7.5% vs. 10.6%) quite considerably as compared to DC animals. Our results also confirmed that TQ treatment conserves the body weight and lipid profile significantly in STZ-treated animals as compared to the DC group. Moreover, the antioxidant enzymes (GSH, SOD, GST, and CAT) levels decreased, liver function enzymes (ALT, AST, and ALP), lipid peroxidation and inflammatory markers (TNF-α, CRP, IL-1β, IL-6) increased by STZ treatment, that is significantly restored after TQ treatment. As compared to untreated animals, TQ restored the hepatocytes architectural changes and collagen fibers and cox-2 protein expression in liver tissues as evaluated by hematoxylin and eosin, Masson’s trichrome, and immunohistochemistry staining. Taken together, all these findings indicated that TQ ameliorates glucose level and lipid metabolism. It restores liver function, antioxidant enzymes, anti-inflammatory markers, and maintains hepatocytes architecture in STZ-induced diabetes mellitus rats. Here, in this study, we have demonstrated for the first time the role of TQ in the reduction of the expression of cyclooxygenase-2 and fibrosis formation in diabetic rats. Based on the findings, the study suggests that TQ is a novel natural drug with a wide range of clinical applications including the management of diabetes mellitus.
Collapse
|
5
|
Lima Júnior JPD, Franco RR, Saraiva AL, Moraes IB, Espindola FS. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113667. [PMID: 33301920 DOI: 10.1016/j.jep.2020.113667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The substantial increase in diabetes cases worldwide has been a major public health problem, and the use of medicinal plants can be considered an interesting alternative to control the disease and its complications. Anacardium humile St. Hill. (Anacardiaceae) is a typical plant from the Brazilian savanna, popularly known for its antidiarrheal, expectorant, antidiabetic and anti-inflammatory properties, however, few studies have fully described its biological properties. This study aimed to investigate in vitro and ex vivo the antioxidant and antiglycation potential of A. humile ethanolic extract, its organic fractions and three isolated molecules (quercetin, catechin and gallic acid), their capacity to inhibit the glycolytic enzyme α-amylase, as well as their cytotoxic effects against RAW264.7 macrophages. MATERIAL AND METHODS The ethanolic extract of A. humile, its organic fractions and three isolated molecules (catechin, quercetin and gallic acid) were tested for their antioxidant (ORAC, FRAP and DPPH) and antiglycation (BSA/Fructose, BSA/Methylglyoxal, Arginine/Methylglyoxal and Lysine/Methylglyoxal) capacities, and also for its potential to inhibit the enzyme α-amylase. Additionally, bioactive compounds present in the A. humile leaves fractions were elucidated by an HPLC-ESIMS/MS analysis. RESULTS The analysis showed relevant antioxidant activity of DCM (1264.85 ± 76.90 μM Trolox eq/g ORAC; 216.71 ± 1.04 μM Trolox eq/g FRAP and 3.03 ± 0.08 IC50 μg/mL IC50 DPPH) and EtOAc (1300.11 ± 33.04 ORAC, 236.21 ± 23.86 FRAP and 3.03 ± 0.14 μg/mL IC50 DPPH) fractions and also of the isolated molecules, mainly gallic acid (1291.19 ± 8.41 μM Trolox eq/g ORAC, 1103.52 ± 31.48 μM Trolox eq/g FRAP and 0.78 ± 0.11 μg/mL IC50 DPPH). Concerning the antiglycation activity, all samples inhibited over 88% in the BSA-FRU method. In the BSA-MGO and ARG-MGO methods, the Hex, DCM, EtOAc fractions and the isolated molecule catechin stood out. However, in the LYS-MGO model, only the isolated molecules showed significant results. In α-amylase assay, all fractions, for exception Hex, presented notable inhibition capacity with low IC50 values, especially DCM, EtOAc, ButOH and H2O (IC50 0.56 ± 0.10, 0.84 ± 0.01, 0.74 ± 0.03 and 0.79 ± 0.06 μg/mL, respectively). Tests using hepatic tissue showed a notorious capacity of the DCM, AcOEt and ButOH fractions, as well as of the isolated molecules to inhibit lipid peroxidation and ROS production, and also to preserve thiol groups. Molecules of great antioxidant potential were found in our samples, such as kaempferol, quercetin, catechin, gallic acid and luteolin. CONCLUSION A. humile extract and its organic fractions showed promising antioxidant and antiglycation potential and a prominent capacity to inhibit the α-amylase enzyme. Hence, this study presents new results and stimulates further research to elucidate the biological properties of A. humile and its capacity to manage DM and its complications.
Collapse
Affiliation(s)
- Joed Pires de Lima Júnior
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Izabela Barbosa Moraes
- Center of Biological Sciences and Health (CCBS), Federal University of Oeste da Bahia (UFOB), Barreiras, BA, Brazil
| | - Foued Salmen Espindola
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Paul M, Sohag MSU, Khan A, Barman RK, Wahed MII, Khan MRI. Pumpkin ( Cucurbita maxima) seeds protect against formaldehyde-induced major organ damages. Heliyon 2020; 6:e04587. [PMID: 32904241 PMCID: PMC7452453 DOI: 10.1016/j.heliyon.2020.e04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
Exposures to hazardous chemicals including formaldehyde are harmful to human health. In this study, the authors investigate the protective effects of pumpkin seed oil (PSO) extract against formaldehyde-induced major organ damages in mice. Administration of formaldehyde (FA) caused significant elevation of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum creatinine, etc. Histopathological examinations of liver, kidney, and brain tissues showed the degenerations of those organs. Mice pretreated with PSO extract significantly attenuated the FA-induced elevation of SGOT (39.0 ± 1.30 vs 20.5 ± 0.65 IU/L; FA-group vs PSO treatment group), SGPT (91.8 ± 1.65 vs 51.0 ± 1.29 IU/L), serum creatinine (1.05 ± 0.07 vs 0.65 ± 0.07 IU/L), and preserved the normal histology of organ tissues. The FA-induced elevation of malondialdehyde (MDA) in the brain, liver, and kidneys was suppressed by pretreatment with PSO extract. The extract also attenuated the FA-induced reduction of endogenous antioxidant pools. In vitro phytochemical analyses showed that PSO extract possesses free radical scavenging and total antioxidant activities due to the presence of phenolic and flavonoid compounds. Thus, PSO extract has significant protective effects against FA-induced organ toxicities by scavenging oxidative stress and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Mollika Paul
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Alam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ranjan Kumar Barman
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mir Imam Ibne Wahed
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Rafiqul Islam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
7
|
Haidara MA, Dallak M, El Karib AO, Abd Ellatif M, Eid RA, Heidar EHA, Al-Ani B. Insulin protects against hepatocyte ultrastructural damage induced by type 1 diabetes mellitus in rats. Ultrastruct Pathol 2018; 42:508-515. [PMID: 30497321 DOI: 10.1080/01913123.2018.1551258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetic complications that affect vital organs such as the heart and liver represent a major public health concern. The potential protective effects of the hormone insulin against hepatocyte ultrastructural alterations induced secondary to type 1 diabetes mellitus (T1DM) in a rat model of the disease have not been investigated before. Therefore, rats were injected once with 65 mg/kg streptozotocin (T1DM group) and the protection group (T1DM+Ins) received a daily injection of insulin 48 h post diabetic induction by streptozotocin and continued until being sacrificed at week 8. The harvested liver tissues were examined using transmission electron microscopy (TEM) and blood samples were assayed for biomarkers of liver injury enzyme, glycemia, lipidemia, inflammation, and oxidative stress. TEM images showed that T1DM induced profound hepatocyte ultrastructural alterations as demonstrated by pyknotic nucleus, condensation of chromatin, irregular nuclear membrane, swollen mitochondria, dilated rough endoplasmic reticulum, damaged intercellular space, and accumulation of few lipid droplets inside the hepatocyte cytoplasm, which were substantially protected with insulin. In addition, the blood chemistry profile complements the TEM data as demonstrated by an increase in serum levels of alanine aminotransferase (ALT), dyslipidemia, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) by T1DM that were significantly (p < 0.05) reduced with insulin injections. Thus, we conclude that insulin effectively protects against T1DM-induced liver injury in rats for a period of 8 weeks, possibly due to the inhibition of inflammation, oxidative stress, and dyslipidemia.
Collapse
Affiliation(s)
- Mohamed A Haidara
- a Departments of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia.,b Physiology Department, Kasr al-Aini Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Mohammad Dallak
- a Departments of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Abbas O El Karib
- a Departments of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Mohamed Abd Ellatif
- c Clinical Biochemistry , College of Medicine, King Khalid University , Abha , Saudi Arabia.,d Department of Medical Biochemistry, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Refaat A Eid
- e Pathology Department , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - El Hassan A Heidar
- f Anatomy Department , College of Medicine, King Khalid University , Abha , Saudi Arabia.,g Department of Anatomy , kasr al-Aini Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Bahjat Al-Ani
- a Departments of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
8
|
Rodríguez V, Plavnik L, Tolosa de Talamoni N. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 105:95-102. [DOI: 10.1016/j.biopha.2018.05.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
|
9
|
Bilal HM, Riaz F, Munir K, Saqib A, Sarwar MR. Histological changes in the liver of diabetic rats: A review of pathogenesis of nonalcoholic fatty liver disease in type 1 diabetes mellitus. COGENT MEDICINE 2017. [DOI: 10.1080/2331205x.2016.1275415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Fatima Riaz
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kiran Munir
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anum Saqib
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rehan Sarwar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Akhtar Saeed College of Pharmaceutical Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Khidr BM, El-Sokkary GH, Saleh SM. Study on morphological changes induced by aspartame on liver of normal and diabetic male albino rats. Histol Histopathol 2017. [DOI: 10.7243/2055-091x-4-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Platonova TA, Pridvorova SM, Zherdev AV, Gmoshinskii IV, Vasilevskaya LS, Dzantiev BB. Detection of Gold Nanoparticles in Rat Organs by Transmission Electron Microscopy. Bull Exp Biol Med 2016; 160:817-22. [PMID: 27165067 DOI: 10.1007/s10517-016-3318-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 11/30/2022]
Abstract
The effects of water-dispersed gold nanoparticles (8.0±0.9 nm in diameter) on the rat small intestinal mucosa and Peyer plaques, liver, and spleen were studied by electron microscopy. Water-dispersed gold nanoparticles injected into isolated intestinal loop not only accumulated in the small intestinal mucosa and Peyer plaques, but also penetrated into other organs, e.g. liver and spleen. Ultrastructural changes in the cells (hyperplasia of endoplasmic reticulum) were detected in the studied organs.
Collapse
Affiliation(s)
- T A Platonova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - S M Pridvorova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - A V Zherdev
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - B B Dzantiev
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 2016; 16:e132-41. [PMID: 27226903 PMCID: PMC4868511 DOI: 10.18295/squmj.2016.16.02.002] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals.
Collapse
Affiliation(s)
- Jamaludin Mohamed
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Nazratun Nafizah
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Zariyantey
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S. B. Budin
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Sci Rep 2016; 6:21721. [PMID: 26883167 PMCID: PMC4756298 DOI: 10.1038/srep21721] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Although obesity is undoubtedly major risk for non-alcoholic steatohepatitis (NASH), the presence of lean NASH patients with normal body mass index has been recognized. Here, we report that the insufficiency of phosphatidylethanolamine N-methyltransferase (PEMT) is a risk for the lean NASH. The Pemt−/− mice fed high fat-high sucrose (HFHS) diet were protected from diet-induced obesity and diabetes, while they demonstrated prominent steatohepatitis and developed multiple liver tumors. Pemt exerted inhibitory effects on p53-driven transcription by forming the complex with clathrin heavy chain and p53, and Pemt−/− mice fed HFHS diet demonstrated prominent apoptosis of hepatocytes. Furthermore, hypermethylation and suppressed mRNA expression of F-box protein 31 and hepatocyte nuclear factor 4α resulted in the prominent activation of cyclin D1. PEMT mRNA expression in liver tissues of NASH patients was significantly lower than those with simple steatosis and we postulated the distinct clinical entity of lean NASH with insufficiency of PEMT activities.
Collapse
|
14
|
Lucchesi AN, Cassettari LL, Spadella CT. Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J Diabetes Res 2015; 2015:494578. [PMID: 25789328 PMCID: PMC4350960 DOI: 10.1155/2015/494578] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. METHODS Thirty nondiabetic control rats (NC) and 30 untreated diabetic (UD) rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. RESULTS UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. CONCLUSION Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.
Collapse
Affiliation(s)
- Amanda Natália Lucchesi
- Graduate Program in General Basis of Surgery, Faculty of Medicine, São Paulo State University (UNESP), 18618-970 Botucatu, SP, Brazil
| | | | - César Tadeu Spadella
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), 18618-970 Botucatu, SP, Brazil
- *César Tadeu Spadella:
| |
Collapse
|
15
|
Platonova TA, Pridvorova SM, Zherdev AV, Vasilevskaya LS, Arianova EA, Gmoshinski IV, Khotimchenko SA, Dzantiev BB, Popov VO, Tutelyan VA. Identification of silver nanoparticles in the small intestinal mucosa, liver, and spleen of rats by transmission electron microscopy. Bull Exp Biol Med 2014; 155:236-41. [PMID: 24130999 DOI: 10.1007/s10517-013-2122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of water-dispersed Ag nanoparticles on the small intestinal mucosa, liver, and spleen of rats were studied by transmission electron microscopy. Acute experiments demonstrated penetration of Ag nanoparticles injected into the isolated intestinal loop into the intestinal mucosa, liver, and splenic tissues. Ultrastructural changes (lobed nucleus, megamitochondria) were found in the studied organs. These data indicated that injection of water-dispersed Ag nanoparticles into the gastrointestinal tract was followed by their penetration through the epithelium of the small intestinal mucosa into other organs, e.g. into the liver and spleen. This fact is essential for evaluation of potential risks of the nanoparticle effects on human health and environment.
Collapse
Affiliation(s)
- T A Platonova
- A. N. Bach Institute of Biochemistry, the Russian Academy of Sciences; Institute of Nutrition, the Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cao L, Mao C, Li S, Zhang Y, Lv J, Jiang S, Xu Z. Hepatic insulin signaling changes: possible mechanism in prenatal hypoxia-increased susceptibility of fatty liver in adulthood. Endocrinology 2012; 153:4955-65. [PMID: 22903613 DOI: 10.1210/en.2012-1349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly linked to insulin resistance. Prenatal hypoxia (PH) is a risk factor in programming of insulin resistance, glucose intolerance, and metabolic dysfunctions in later life, although the mechanisms are unclear. In this study, the role of metabolic and histological changes as well as the hepatic insulin signaling mechanisms were determined in increasing susceptibility of NAFLD in the fetus and offspring exposed to PH. Pregnant rats exposed to hypoxia (O(2) 10%) during pregnancy demonstrated decreased fetal body and liver weight as well as liver to body weight ratio, whereas these changes were not observed in the offspring. However, male liver to body weight ratio increased after PH stress. Microscopic analysis demonstrated that exposure to PH resulted in distorted architecture of the hepatic parenchyma cells with reduced cellularity in the fetus and offspring. Blood glucose and insulin levels were lower with enhanced insulin sensitivity and increased expression of hepatic insulin-signaling elements in the fetus. Furthermore, insulin resistance, impaired glucose homeostasis, and altered expression of insulin-signaling elements occurred in the offspring. Postnatal hypoxia increased hepatic lipid droplets and triglyceride in liver, whereas expressions of insulin-signaling elements were less in the offspring exposed to PH except glucose transporters 2. The results indicated that PH contributed to hepatocyte heteroplasia and metabolic changes that enhanced vulnerability for NAFLD in the offspring, probably via affecting insulin signaling pathway, including glucose transporters 2.
Collapse
Affiliation(s)
- Li Cao
- Institute for Fetal Origin Diseases and Reproductive Medicine Center, Soochow University, Suzhou 215006, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Remedio RN, Castellar A, Barbosa RA, Gomes RJ, Caetano FH. Morphology and protein content of hepatocytes in type I diabetic rats submitted to physical exercises. Micron 2011; 42:484-91. [PMID: 21353573 DOI: 10.1016/j.micron.2011.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/18/2022]
Abstract
The importance of physical exercise practice in the treatment of diabetes has been reported in many studies recently, but only limited data can be found regarding its benefits on liver morphology and protein content of hepatocytes. In order to assess the changes arising from the development of type I diabetes and the benefits of a training protocol, Wistar rats were divided into four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). The training protocol consisted of swimming for 60 min a day, 5 days/week, during 8 weeks. Liver samples were collected, processed and analyzed by histochemical and ultrastructural techniques. Biochemical tests were also conducted to examine the protein content and quantity of DNA in the liver. In morphological assessment, the presence of areas of cytoplasmic basophilia observed in control subjects was not visualized in sedentary diabetics. It was related to differences in the amount of mitochondria in the cytosol. The mitochondrial structure has not undergone relevant changes, and the number of rough endoplasmic reticulum cisterns was clearly inferior in sedentary diabetics, suggesting lower protein production. However, the biochemical analysis of protein content indicated no statistical differences between groups. The exercise, in turn, was not responsible for major changes in these characteristics. On the whole, the morphological damages arising from type I diabetes were noteworthy. Nevertheless, regular physical training was not responsible for significant improvements in some respects, making evident the need for combined application of a distinct form of treatment.
Collapse
Affiliation(s)
- Rafael N Remedio
- Department of Biology, São Paulo State University, Rio Claro, SP, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Adori C, Low P, Andó RD, Gutknecht L, Pap D, Truszka F, Takács J, Kovács GG, Lesch KP, Bagdy G. Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology (Berl) 2011; 213:377-91. [PMID: 21052985 DOI: 10.1007/s00213-010-2041-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/29/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to cause selective long-term serotonergic damage. OBJECTIVES The aim of this study was to characterize the ultrastructure of serotonergic pericarya and proximal neurites in the dorsal raphe nucleus as well as the ultrastructure of serotonergic axons in the frontal cortex of adolescent Dark Agouti rats 3 days after treatment with 15 mg/kg i.p. MDMA. METHODS Light microscopic immunohistochemistry and pre-embedding immunoelectron microscopy with a novel tryptophan hydroxylase-2 (Tph2) specific antibody, as a marker of serotonergic structures. RESULTS Light microscopic analysis showed reduced serotonergic axon density and aberrant swollen varicosities in the frontal cortex of MDMA-treated animals. According to the electron microscopic analysis, Tph2 exhibited diffuse cytoplasmic immunolocalization in dorsal raphe neuronal cell bodies. The ultrastructural-morphometric analysis of these cell bodies did not indicate pathological changes or significant alteration in the cross-sectional areal density of any examined organelles. Proximal serotonergic neurites in the dorsal raphe exhibited no ultrastructural alteration. However, in the frontal cortex among intact fibers, numerous serotonergic axons with destructed microtubules were found. Most of their mitochondria were intact, albeit some injured axons also contained degenerating mitochondria; moreover, a few of them comprised confluent membrane whorls only. CONCLUSIONS Our treatment protocol does not lead to ultrastructural alteration in the serotonergic dorsal raphe cell bodies and in their proximal neurites but causes impairment in cortical serotonergic axons. In these, the main ultrastructural alteration is the destruction of microtubules although a smaller portion of these axons probably undergo an irreversible damage.
Collapse
Affiliation(s)
- Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tang D, Yin Y, Zhang Z, Gao Y, Wei Y, Chen Y, Han L. Simultaneous HPLC-DAD analysis of five flavonoids in diabetic rat plasma and its application in the study of pharmacokinetics. ACTA CHROMATOGR 2009. [DOI: 10.1556/achrom.21.2009.3.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Welt K, Weiss J, Martin R, Hermsdorf T, Drews S, Fitzl G. Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2007; 14:196-203. [PMID: 16781853 DOI: 10.1016/j.phymed.2006.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ginkgo biloba extract EGb 761 was studied for its nephroprotective effects in experimentally diabetic and hypoxic rats. Duration of streptozotocin-induced diabetes was 4 months, that of respiratoric hypoxia of the diabetic group 20 min. The daily dose of 100 mg EGb/kg bodyweight started 1 month after induction of the diabetes. EGb reduced diabetes-induced morphological alterations of the kidney such as increase in volume of glomeruli, capillary tufts, urinary space, and thickening of Bowman's capsule basement membrane. Diabetically increased immunostaining of interstitial collagenes of types I, III, and VI was diminished by the EGb extract. EGb reduced the relative total SOD activity from 163% in diabetic kidney to 46%. Additional hypoxia-induced ultrastructural damage was also diminished.
Collapse
Affiliation(s)
- K Welt
- Department of Medicine, Institute of Anatomy, University of Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Shao JQ, Iwashita N, Du H, Wang YT, Wang YY, Zhao M, Wang J, Watada H, Kawamori R. Angiotensin II receptor blocker provides pancreatic beta-cell protection independent of blood pressure lowering in diabetic db/db mice. Acta Pharmacol Sin 2007; 28:246-57. [PMID: 17241528 DOI: 10.1111/j.1745-7254.2007.00492.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM Several epidemiological studies have suggested that treatment with angiotensin II type 1 receptor blocker provided a risk reduction of developing type 2 diabetes. The aim of this study was to investigate whether and how chronic candesartan treatment can attenuate the deleterious influence of the hyperactive local intra-islet renin-angiotensin system in the diabetes state. METHODS Eight-week-old db/db mice were randomized to candesartan 1 mg/kg, candesartan 10 mg/kg, manidipine 10 mg/kg, or placebo via gavage for 6 weeks. Their age-matched nondiabetic littermates db/m mice were treated with placebo and acted as nondiabetic controls. After 6 weeks' treatment, an intraperitoneal glucose tolerance test, immunohistochemical staining of oxidative stress markers, insulin, CD31, azan staining and an electron microscopy observation were performed. RESULTS Chronic candesartan treatment provided an improvement of glucose tolerance, and greatly rescued islet beta-cell mass. Candesartan treatment also notably decreased staining intensity of oxidative stress markers, as well as attenuating intra-islet fibrosis and improving blood supply in the islet. In the electron microscopy observation, candesartan-treated animals exhibited improved granulation and less remarkable endoplasmic reticulum and Golgi bodies; furthermore, candesartan treatment greatly relieved the swelling of mitochondria to nearly normal. Both the benefits of reducing oxidative stress and ultrastructure protection were in a dose-dependent and blood pressure-independent manner. CONCLUSION After diabetes was initiated, candesartan treatment could not reverse the state of diabetes, but it effectively improved glucose tolerance and protected beta-cell function by attenuating oxidative stress, islet fibrosis, sparsity of blood supply and ultrastructure disruption in a dose-dependent and blood pressure-independent manner.
Collapse
Affiliation(s)
- Jia-qing Shao
- Department of Endocrinology and Metabolism, Nanjing General Hospital of Nanjing Command, Nanjing 210002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hinton M, Gutsol A, Dakshinamurti S. Thromboxane hypersensitivity in hypoxic pulmonary artery myocytes: altered TP receptor localization and kinetics. Am J Physiol Lung Cell Mol Physiol 2006; 292:L654-63. [PMID: 17085527 DOI: 10.1152/ajplung.00229.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-induced neonatal persistent pulmonary hypertension (PPHN) is characterized by sustained vasospasm and increased thromboxane (TxA2)-to-prostacyclin ratio. We previously demonstrated that moderate hypoxia induces myocyte TxA2 hypersensitivity. Here, we examined TxA2 prostanoid receptor (TP-R) localization and kinetics following hypoxia to determine the mechanism of hypoxia-induced TxA2 hypersensitivity. Primary cultured neonatal pulmonary artery myocytes were exposed to 10% O2 (hypoxic myocytes; HM) or 21% O2 (normoxic myocytes; NM) for 3 days. PPHN was induced in neonatal piglets by in vivo exposure to 10% FiO2 for 3 days. TP-R was studied in whole lung sections from pigs with hypoxic PPHN- and age-matched controls; intracellular localization was studied by immunocytochemistry. TP-R affinity was studied in cultured myocytes by saturation binding kinetics using 3H-SQ-29548 and competitive binding kinetics by coincubation with U-46619. Phosphorylation and coupling were examined in immunoprecipitated TP-R. We report distal propagation of TP-R expression in PPHN, extending to pulmonary arteries <50 microm. In HM, intracellular TP-R moves towards the perinuclear region, mirroring a change in endoplasmic reticulum (ER) morphology. TP-R kinetics also alter in HM membranes, with decreased Kd and Bmax (maximal binding sites). Additionally, in hypoxia, 3H-SQ-29548 is displaced at lower concentration of U-46619 than in normoxia, suggesting increased agonist affinity. Phosphorylation of serine residues on HM TP-R was significantly decreased compared with NM; this difference correlated with increased Galphaq coupling in hypoxia and was ablated by incubation with PKA. We conclude that the TP-R is normally desensitized in the neonatal pulmonary circuit by PKA-mediated regulatory phosphorylation, decreasing ligand affinity and coupling to Galphaq; this protection is lost following hypoxic exposure. Also, the appearance of TP-R in resistance arteries after development of hypoxic PPHN may contribute to increased pulmonary arterial pressure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding, Competitive
- Calcium/metabolism
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Hypoxia/physiopathology
- Immunoenzyme Techniques
- Immunoprecipitation
- Kinetics
- Ligands
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Phosphorylation
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Swine
- Thromboxane A2/metabolism
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Martha Hinton
- Department of Physiology, University of Manitoba, Manitoba Institute of Child Health, Manitoba, Canada
| | | | | |
Collapse
|
23
|
El-Sokkary GH, Khidr BM, Younes HA. Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur J Pharmacol 2006; 540:107-14. [PMID: 16730703 DOI: 10.1016/j.ejphar.2006.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/08/2006] [Accepted: 04/18/2006] [Indexed: 11/21/2022]
Abstract
Oxygen deficiency during critical illness may cause profound changes in cellular metabolism and subsequent tissue and organ dysfunction. Thus, the present study was designed to determine the effects of hypoxia and reoxygenation on the levels of lipid peroxidation and the morphological changes in the liver of male mice as well as the protective role of melatonin as an antioxidant. Two experiments were carried out in this study. Experiment I includes three groups of mice (control, hypoxic, and hypoxic+melatonin) while the experiment II includes two groups (reoxygenated and reoxygenated+melatonin). The levels of oxidized lipids were measured and the morphological changes were investigated using light and electron microscopy. In experiment I, hypoxia strongly stimulated lipid peroxidation levels (88%) while melatonin administration inhibited this increase (69%). Severe morphological changes (necrosis, dilated congested blood vessels, collection of inflammatory cells, condensed heterochromatic with irregular outlines nuclei, and mitochondrial degeneration) were detected in the liver of hypoxic mice. In experiment II, reoxygenation inhibited the levels of oxidized lipids (42%) versus hypoxic mice and some morphological changes were detected. When melatonin was given before reoxygenation, it inhibited the levels of lipid peroxidation by 66% versus hypoxic mice. Also, melatonin enhanced the recovery profile by 41% when compared with mice that reoxygenated with room air only. All morphological alterations that detected in both hypoxic and reoxygenated mice were repaired when melatonin administered. These results indicate that hypoxia and reoxygenation induce severe alterations in the liver and that melatonin exerts beneficial role in restoring tissue alterations after subjection to hypoxia.
Collapse
Affiliation(s)
- Gamal H El-Sokkary
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | | | | |
Collapse
|
24
|
Kim J, Li Q, Fang CX, Ren J. Paradoxical effects of ginkgolide B on cardiomyocyte contractile function in normal and high-glucose environments. Acta Pharmacol Sin 2006; 27:536-42. [PMID: 16626507 DOI: 10.1111/j.1745-7254.2006.00320.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM Ginkgo biloba extract is a natural product used widely for cerebral and cardiovascular diseases. It is mainly composed of terpene lactones (ginkgolide A and B) and flavone glycosides (eg quercetin and kaempferol). To better understand the cardiac electromechanical action of Ginkgo biloba extract in normal and diabetic states, this study was designed to examine the effect of ginkgolide B on cardiomyocyte contractile function under normal and high-glucose environments. METHODS Isolated adult rat ventricular myocytes were cultured for 6 h in a serum-free medium containing either normal (NG; 5.5 mmol/L) or high (HG; 25.5 mmol/L) glucose with or without ginkgolide B (0.5-2.0 microg/mL). Mechanical properties were evaluated using the IonOptix MyoCam system. Contractile properties analyzed included peak shortening (PS), maximal velocity of shortening/relengthening (+/-dl/dt), time-to-PS (TPS) and time-to-90% relengthening (TR90). Levels of essential Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB) and Na(+)-Ca(2+) exchanger (NCX) were assessed by Western blotting. RESULTS Ginkgolide B nullified HG-induced prolongation in TR90. However, ginkgolide B depressed PS, +/-dl/dt and shortened TPS in NG and HG cells. Ginkgolide B also prolonged TR90 in NG cells. Western blot analysis revealed that HG upregulated SERCA2a and downregulated PLB expression without affecting that of NCX. Ginkgolide B disrupted the NG-HG response pattern in SERCA2a and NCX without affecting that of PLB. CONCLUSION Ginkgolide B affects cardiomyocyte contractile function under NG or HG environments in a paradoxical manner, which may be attributed to uneven action on Ca(2+) regulatory proteins under NG and HG conditions.
Collapse
Affiliation(s)
- J Kim
- Center for Cardiovascular Research and Alternative Medicine, Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|