1
|
Medicinal plants as potential therapeutic agents for trypanosomosis: a systematic review. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2
|
Alotaibi A, Ebiloma GU, Williams R, Alfayez IA, Natto MJ, Alenezi S, Siheri W, AlQarni M, Igoli JO, Fearnley J, De Koning HP, Watson DG. Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules 2021; 26:molecules26133912. [PMID: 34206940 PMCID: PMC8272135 DOI: 10.3390/molecules26133912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4′-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4′,7-dimethoxykaempferol, and naringenin 4′,7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4′,7 dimethyl ether and 4′methoxy kaempferol with activity of 15–20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4′,7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.
Collapse
Affiliation(s)
- Adullah Alotaibi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Roderick Williams
- IBEHR, School of Health and Life Science, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ibrahim A. Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Qassim Health Cluster, Ministry of Health, Buraydah 52367, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
| | - Sameah Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
| | - Weam Siheri
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, University of Tripoli, Tripoli 50676, Libya;
| | - Malik AlQarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Department of Chemistry, University of Agriculture, Makurdi PMB 2373, Nigeria
| | | | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Correspondence: (H.P.D.K.); (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
- Correspondence: (H.P.D.K.); (D.G.W.)
| |
Collapse
|
3
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
4
|
Rosselli S, Maggio AM, Raccuglia RA, Simmonds MSJ, Arnold NA, Bruno M. Guaianolides from the Aerial Parts of Centaurea Hololeuca. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Seven guaianolides were isolated from the acetone extract of the aerial parts of Centaurea hololeuca Boiss. The antifeedant activity of the natural compounds (1–7) and of four chloro derivatives (8–11), synthesized from repin (1) and janerin (3) were tested against larvae of Spodoptera littoralis. Cebellin J (6) and chlorojanerin (11) showed significant antifeedant activity at 100 ppm, whereas at this concentration cebellin G (4) and 15-deschloro-15-hydroxychlorojanerin (7) stimulated feeding. Cebellin G (4) stimulated larvae of S. littoralis to feed at low concentration, but deterred feeding at high concentrations. The addition of chlorine to repin (1) resulted in an increase in antifeedant activity.
Collapse
Affiliation(s)
- Sergio Rosselli
- Dipartimento Chimica Organica “E. Paternò”, Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | - Antonella Maria Maggio
- Dipartimento Chimica Organica “E. Paternò”, Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | - Rosa Angela Raccuglia
- Dipartimento Chimica Organica “E. Paternò”, Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | | | - Nelly A. Arnold
- Università du Saint Esprit, Facultè de Agronomie, Kaslik, Beirut, Lebanon
| | - Maurizio Bruno
- Dipartimento Chimica Organica “E. Paternò”, Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| |
Collapse
|
5
|
Elsebai MF, Mocan A, Atanasov AG. Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential As an Anti-Hepatitis C Virus Agent. Front Pharmacol 2016; 7:472. [PMID: 28008316 PMCID: PMC5143615 DOI: 10.3389/fphar.2016.00472] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/21/2016] [Indexed: 01/18/2023] Open
Abstract
The different pharmacologic properties of plants-containing cynaropicrin, especially artichokes, have been known for many centuries. More recently, cynaropicrin exhibited a potential activity against all genotypes of hepatitis C virus (HCV). Cynaropicrin has also shown a wide range of other pharmacologic properties such as anti-hyperlipidemic, anti-trypanosomal, anti-malarial, antifeedant, antispasmodic, anti-photoaging, and anti-tumor action, as well as activation of bitter sensory receptors, and anti-inflammatory properties (e.g., associated with the suppression of the key pro-inflammatory NF-κB pathway). These pharmacological effects are very supportive factors to its outstanding activity against HCV. Structurally, cynaropicrin might be considered as a potential drug candidate, since it has no violations for the rule of five and its water-solubility could allow formulation as therapeutic injections. Moreover, cynaropicrin is a small molecule that can be easily synthesized and as the major constituent of the edible plant artichoke, which has a history of safe dietary use. In summary, cynaropicrin is a promising bioactive natural product that, with minor hit-to-lead optimization, might be developed as a drug for HCV.
Collapse
Affiliation(s)
- Mahmoud F Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura, Egypt
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of ViennaVienna, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| |
Collapse
|
6
|
Vandesmet VCS, Felipe CFB, Kerntopf MR, Rolón M, Vega C, Coronel C, Barbosa AGR, Coutinho HDM, Menezes IRA. The use of herbs against neglected diseases: Evaluation of in vitro leishmanicidal and trypanocidal activity of Stryphnodendron rotundifolium Mart. Saudi J Biol Sci 2015; 24:1136-1141. [PMID: 28855804 PMCID: PMC5562377 DOI: 10.1016/j.sjbs.2015.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022] Open
Abstract
The evaluation of the leishmanicidal and trypanocidal activity of the hydroalcoholic extract of the bark of Stryphnodendron rotundifolium Mart. (EHCSR) was carried out to find an alternative treatment for parasitic diseases. EHCSR was prepared and used at four different concentrations (1000, 500, 250, 125 μg/mL) in in vitro assays for activity against Leishmania promastigotes using the species Leishmania brasiliensis and Leishmania infantum and for trypanocidal activity using the epimastigotes of Trypanosoma cruzi. We also tested EHCSR for cytotoxicity against adhered cultured Murine J774 fibroblasts. The tests were performed in triplicate, and the percent mortality of parasites, IC50 and percent toxicity were determined. With regard to anti-leishmania activity against L. infantum, there was a mean mortality of 45% at all concentrations, and against L. brasiliensis, a substantial effect was seen at 1000 μg/mL with 56.38% mortality, where the IC50 values were 1338.76 and 987.35 μg/mL, respectively. Trypanocidal activity was notably high at 1000 μg/mL extract with 82.31% mortality of epimastigotes. Cytotoxicity at the highest extract concentrations of 500 and 1000 μg/mL was respectively 75.12% and 94.14%, with IC50 = 190.24 μg/mL. Despite that the extract has anti-parasitic activity, its substantial cytotoxicity against fibroblasts cells makes its systemic use nonviable as a therapeutic alternative.
Collapse
Affiliation(s)
| | - Cícero F B Felipe
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa (PB), Brazil
| | - Marta R Kerntopf
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil
| | - Miriam Rolón
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Celeste Vega
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Cathia Coronel
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Andreza G R Barbosa
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil
| | - Henrique D M Coutinho
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato (CE), Brazil.,Faculdade Leão Sampaio, Juazeiro do Norte (CE), Brazil
| | - Irwin R A Menezes
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil.,Faculdade Leão Sampaio, Juazeiro do Norte (CE), Brazil
| |
Collapse
|
7
|
Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:59-68. [PMID: 24767116 DOI: 10.1016/j.plantsci.2014.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 05/03/2023]
Abstract
Cynara cardunculus (Asteraceae) is a cross pollinated perennial crop which includes the two cultivated taxa globe artichoke and cultivated cardoon. The leaves of these plants contain high concentrations of sesquiterpene lactones (STLs) among which cynaropicrin is the most represented, and has recently attracted attention because of its therapeutic potential as anti-tumor and anti-photoaging agent. Costunolide is considered the common precursor of the STLs and three enzymes are involved in its biosynthetic pathway: i.e. the germacrene A synthase (GAS), the germacrene A oxidase (GAO) and the costunolide synthase (COS). Here we report on the isolation of two P450 genes, (i.e. CYP71AV9 and CYP71BL5), in a set of ∼19,000 C. cardunculus unigenes, and their functional characterization in yeast and in planta. The metabolite analyses revealed that the co-expression of CYP71AV9 together with GAS resulted in the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid in yeast. The co-expression of CYP71BL5 and CYP71AV9 with GAS led to biosynthesis of the free costunolide in yeast and costunolide conjugates in Nicotiana benthamiana, demonstrating their involvement in STL biosynthesis as GAO and COS enzymes. The substrate specificity of CYP71AV9 was investigated by testing its ability to convert amorpha-4,11-diene, (+)-germacrene D and cascarilladiene to their oxidized products when co-expressed in yeast with the corresponding terpene synthases.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Katarina Cankar
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Alain Hehn
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Frédéric Bourgaud
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Barbara Menin
- PTP/Rice Genomics Unit, Via Einstein, 26900 Lodi, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Jules Beekwilder
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
8
|
Bruno M, Bancheva S, Rosselli S, Maggio A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): distribution, (13)C NMR spectral data and biological properties. PHYTOCHEMISTRY 2013; 95:19-93. [PMID: 23948259 DOI: 10.1016/j.phytochem.2013.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 05/22/2023]
Abstract
Asteraceae Bercht. & J. Presl is one of the biggest and most economically important plant families. The taxonomy and phylogeny of Asteraceae is rather complex and according to the latest and most reliable taxonomic classification of Panero & Funk, based on the analysis of nine chloroplast regions, the family is divided into 12 subfamilies and 35 tribes. One of the largest tribes of Asteraceae is Cardueae Cass. with four subtribes (Carlininae, Echinopinae, Carduinae and Centaureinae) and more than 2500 species. Susanna & Garcia-Jacas have organized the genera of Centaureinae (about 800 species) into seven informal groups, which recent molecular studies have confirmed: 1. Basal genera; 2. Volutaria group; 3. Rhaponticum group; 4. Serratula group; 5. Carthamus group; 6. Crocodylium group; 7. Centaurea group. This review summarizes reports on sesquiterpenoids from the Centaureinae subtribe of the Asteraceae family, as well as the (13)C NMR spectral data described in the literature. It further reviews studies concerning the biological activities of these metabolites. For this work, literature data on sesquiterpenes from the Centaureinae subtribe were retrieved with the help of the SciFinder database and other similar data banks. All entries from 1958 until the end of 2011 were considered. This review is addressed to scientists working in the metabolomics field such as chemists, botanists, etc., the spectroscopic data reported make this work a good tool for structural elucidation, the biological section gives useful information to those who wish to study the structure activity relationships.
Collapse
Affiliation(s)
- Maurizio Bruno
- STEBICEF, Section of Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
9
|
Menin B, Comino C, Portis E, Moglia A, Cankar K, Bouwmeester HJ, Lanteri S, Beekwilder J. Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:1-8. [PMID: 22608514 DOI: 10.1016/j.plantsci.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 05/16/2023]
Abstract
Globe artichoke (Cynara cardunculus var. scolymus L., Asteraceae) is a perennial crop traditionally consumed as a vegetable in the Mediterranean countries and rich in nutraceutically and pharmaceutically active compounds, including phenolic and terpenoid compounds. Its bitter taste is caused by its high content of sesquiterpene lactones (STLs), such as cynaropicrin. The biosynthetic pathway responsible for STL biosynthesis in globe artichoke is unknown, but likely proceeds through germacrene A, as has been shown for other Asteraceae species. Here, we investigated the accumulation of cynaropicrin in different tissues of globe artichoke, and compared it to accumulation of phenolic compounds. Cynaropicrin concentration was highest in old leaves. A putative germacrene A synthase (GAS) gene was identified in a set of ~19,000 globe artichoke unigenes. When heterologously expressed in Escherichia coli, the putative globe artichoke GAS converted farnesyl diphosphate (FPP) into (+)-germacrene A. Among various tissues assayed, the level of globe artichoke GAS expression was highest in mature (six week old) leaves. A sequence polymorphism within a mapping population parent allowed the corresponding GAS gene to be positioned on a genetic map. This study reports the isolation, expression and mapping of a key gene involved in STL biosynthesis in C. cardunculus. This is a good basis for further investigation of this pathway.
Collapse
Affiliation(s)
- Barbara Menin
- DIVAPRA, Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (TO), Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arioka S, Sakagami M, Uematsu R, Yamaguchi H, Togame H, Takemoto H, Hinou H, Nishimura SI. Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Bioorg Med Chem 2010; 18:1633-40. [PMID: 20097567 DOI: 10.1016/j.bmc.2009.12.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/25/2009] [Accepted: 12/30/2009] [Indexed: 12/13/2022]
Abstract
The protozoan Trypanosoma cruzi, the causative agent of Chagas' disease, can infect the heart, causing cardiac arrest frequently followed by death. To treat this disease, a potential molecular drug target is T. cruzi trans-sialidase (TcTS). However, inhibitors found to date are not strong enough to serve as a lead scaffold; most inhibitors reported thus far are derivatives of the substrate sialic acid or a transition state analogue known as 2,3-dehydro-3-deoxy-N-acetylneuraminic acid (DANA) with an IC(50) value of more than hundreds of micromolar. Since natural products are highly stereodiversified and often provide highly specific biological activity, we screened a natural product library for inhibitors of TcTS and identified promising flavonoid and anthraquinone derivatives. A structure-activity relationship (SAR) analysis of the flavonoids revealed that apigenin had the minimal and sufficient structure for inhibition. Intriguingly, the compound has been reported to possess trypanocidal activity. An SAR analysis of anthraquinones showed that 6-chloro-9,10-dihydro-4,5,7-trihydroxy-9,10-dioxo-2-anthracenecarboxylic acid had the strongest inhibitory activity ever found against TcTS. Moreover, its inhibitory activity appeared to be specific to TcTS. These compounds may serve as potent lead chemotherapeutic scaffolds against Chagas' disease.
Collapse
Affiliation(s)
- Shingo Arioka
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for Post-Genome, Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Susceptibility of some clinical isolates of Staphylococcus aureus to fractions from the aerial parts of Leuzea carthamoides. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Anti-Infectious Activity in The Anthemideae Tribe. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1572-5995(08)80012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N, Ferreira A, Morello A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:601-20. [PMID: 16626984 DOI: 10.1016/j.cbpa.2006.03.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 01/07/2023]
Abstract
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.
Collapse
Affiliation(s)
- Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, P.O. Box 70000, Santiago 7, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rosselli S, Maggio A, Bellone G, Bruno M. The first example of natural cyclic carbonate in terpenoids. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.07.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Emendörfer F, Emendörfer F, Bellato F, Noldin VF, Cechinel-Filho V, Yunes RA, Delle Monache F, Cardozo AM. Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum. Biol Pharm Bull 2005; 28:902-4. [PMID: 15863902 DOI: 10.1248/bpb.28.902] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study describes the antispasmodic activity of some fractions and cynaropicrin, a sesquiterpene lactone from Cynara scolymus, cultivated in Brazil, against guinea-pig ileum contracted by acetylcholine. The dichloromethane fraction showed the most promising biological effects, with an IC(50) of 0.93 (0.49-1.77) mg/ml. Its main active component, the sesquiterpene lactone cynaropicrin, exhibited potent activity, with IC(50) of 0.065 (0.049-0.086) mg/ml, being about 14-fold more active than dichloromethane fraction and having similar potency to that of papaverine, a well-known antispasmodic agent. The results confirm the popular use of artichoke for the treatment of gastrointestinal disturbances, and encourage new studies on this compound, in order to obtain new antispasmodic agents.
Collapse
Affiliation(s)
- Fernanda Emendörfer
- Programa de Mestrado em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas, University of Vale do Itajaí, Itajaí 88302-202, Santa Catarina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|