1
|
Prokina KI, Yubuki N, Tikhonenkov DV, Ciobanu MC, López‐García P, Moreira D. Refurbishing the marine parasitoid order Pirsoniales with newly (re)described marine and freshwater free-living predators. J Eukaryot Microbiol 2024; 71:e13061. [PMID: 39350673 PMCID: PMC11603286 DOI: 10.1111/jeu.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Pirsoniales is a stramenopile order composed of marine parasitoids of diatoms with unique life cycle. Until recently, a single genus, Pirsonia, uniting six species, was known. The recent identification of new free-living eukaryotrophic Pirsoniales Pirsonia chemainus, Feodosia pseudopoda, and Koktebelia satura changed our understanding of this group as exclusively parasitic. However, their cell ultrastructure and feeding preferences were not fully studied due to the death of the cultures. In this study, we re-isolated some of these Pirsoniales and established six new strains exhibiting predatory behavior, including a first freshwater representative. This allowed us to describe five new genera and species, as well as to emend the diagnosis of the order Pirsoniales. The 18S rRNA gene phylogenetic analysis revealed the position of new strains within Pirsoniales and their relationships with parasitoid relatives and environmental sequence lineages. Feeding experiments on novel Pirsoniales strains using diverse algal prey showed that they were not able to form trophosomes and auxosomes. The ability of cell aggregation in Pirsoniales was observed for the first time. One of the studied strains contained intracellular gammaproteobacteria distantly related to Coxiella. Ultrastructural analyses revealed a more complex cytoskeleton structure in Pirsoniales than previously thought and supported the monophyly of Bigyromonadea and Pseudofungi.
Collapse
Affiliation(s)
- Kristina I. Prokina
- Ecologie Systématique et EvolutionUniversité Paris‐Saclay, CNRS, AgroParisTechGif‐sur‐YvetteFrance
- Papanin Institute for Biology of Inland Waters RASBorokRussia
| | - Naoji Yubuki
- Ecologie Systématique et EvolutionUniversité Paris‐Saclay, CNRS, AgroParisTechGif‐sur‐YvetteFrance
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris‐Saclay, Multimodal Imaging CenterOrsayFrance
| | - Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters RASBorokRussia
- AquaBioSafe LaboratoryUniversity of TyumenTyumenRussia
| | - Maria Christina Ciobanu
- Ecologie Systématique et EvolutionUniversité Paris‐Saclay, CNRS, AgroParisTechGif‐sur‐YvetteFrance
| | | | - David Moreira
- Ecologie Systématique et EvolutionUniversité Paris‐Saclay, CNRS, AgroParisTechGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
3
|
Pánek T, Barcytė D, Treitli SC, Záhonová K, Sokol M, Ševčíková T, Zadrobílková E, Jaške K, Yubuki N, Čepička I, Eliáš M. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol 2022; 20:66. [PMID: 35296310 PMCID: PMC8928634 DOI: 10.1186/s12915-022-01263-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Background The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them. Results We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes. Conclusions With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01263-w.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kristína Záhonová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Naoji Yubuki
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic.,Bioimaging Facility, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic.
| |
Collapse
|
4
|
Taxon-rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-branching Stramenopiles. Protist 2019; 170:125682. [DOI: 10.1016/j.protis.2019.125682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
|
5
|
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Mol Biol Evol 2019; 36:757-765. [PMID: 30668767 PMCID: PMC6844682 DOI: 10.1093/molbev/msz012] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Denis V Tikhonenkov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
6
|
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. Genome Biol Evol 2018; 10:427-433. [PMID: 29360967 PMCID: PMC5793813 DOI: 10.1093/gbe/evy014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/13/2023] Open
Abstract
Recent phylogenetic analyses position certain “orphan” protist lineages deep in the tree of eukaryotic life, but their exact placements are poorly resolved. We conducted phylogenomic analyses that incorporate deeply sequenced transcriptomes from representatives of collodictyonids (diphylleids), rigifilids, Mantamonas, and ancyromonads (planomonads). Analyses of 351 genes, using site-heterogeneous mixture models, strongly support a novel super-group-level clade that includes collodictyonids, rigifilids, and Mantamonas, which we name “CRuMs”. Further, they robustly place CRuMs as the closest branch to Amorphea (including animals and fungi). Ancyromonads are strongly inferred to be more distantly related to Amorphea than are CRuMs. They emerge either as sister to malawimonads, or as a separate deeper branch. CRuMs and ancyromonads represent two distinct major groups that branch deeply on the lineage that includes animals, near the most commonly inferred root of the eukaryote tree. This makes both groups crucial in examinations of the deepest-level history of extant eukaryotes.
Collapse
Affiliation(s)
- Matthew W Brown
- Department of Biological Sciences, Mississippi State University, USA.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, USA
| | - Aaron A Heiss
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, USA.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, USA
| | - Takashi Shiratori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Orr RJS, Zhao S, Klaveness D, Yabuki A, Ikeda K, Makoto WM, Shalchian-Tabrizi K. Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution. BMC Evol Biol 2018; 18:115. [PMID: 30021531 PMCID: PMC6052632 DOI: 10.1186/s12862-018-1224-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The class Diphyllatea belongs to a group of enigmatic unicellular eukaryotes that play a key role in reconstructing the morphological innovation and diversification of early eukaryotic evolution. Despite its evolutionary significance, very little is known about the phylogeny and species diversity of Diphyllatea. Only three species have described morphology, being taxonomically divided by flagella number, two or four, and cell size. Currently, one 18S rRNA Diphyllatea sequence is available, with environmental sequencing surveys reporting only a single partial sequence from a Diphyllatea-like organism. Accordingly, geographical distribution of Diphyllatea based on molecular data is limited, despite morphological data suggesting the class has a global distribution. We here present a first attempt to understand species distribution, diversity and higher order structure of Diphyllatea. RESULTS We cultured 11 new strains, characterised these morphologically and amplified their rRNA for a combined 18S-28S rRNA phylogeny. We sampled environmental DNA from multiple sites and designed new Diphyllatea-specific PCR primers for long-read PacBio RSII technology. Near full-length 18S rRNA sequences from environmental DNA, in addition to supplementary Diphyllatea sequence data mined from public databases, resolved the phylogeny into three deeply branching and distinct clades (Diphy I - III). Of these, the Diphy III clade is entirely novel, and in congruence with Diphy II, composed of species morphologically consistent with the earlier described Collodictyon triciliatum. The phylogenetic split between the Diphy I and Diphy II + III clades corresponds with a morphological division of Diphyllatea into bi- and quadriflagellate cell forms. CONCLUSIONS This altered flagella composition must have occurred early in the diversification of Diphyllatea and may represent one of the earliest known morphological transitions among eukaryotes. Further, the substantial increase in molecular data presented here confirms Diphyllatea has a global distribution, seemingly restricted to freshwater habitats. Altogether, the results reveal the advantage of combining a group-specific PCR approach and long-read high-throughput amplicon sequencing in surveying enigmatic eukaryote lineages. Lastly, our study shows the capacity of PacBio RS when targeting a protist class for increasing phylogenetic resolution.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway
| | - Dag Klaveness
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Keiji Ikeda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Watanabe M. Makoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Kamran Shalchian-Tabrizi
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
8
|
Grazing of Nuclearia thermophila and Nuclearia delicatula (Nucleariidae, Opisthokonta) on the toxic cyanobacterium Planktothrix rubescens. Eur J Protistol 2017; 60:87-101. [PMID: 28675820 DOI: 10.1016/j.ejop.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
During the last decades, the planktonic cyanobacterium Planktothrix rubescens became a dominant primary producer in many deep pre-alpine lakes. While altered physiochemical conditions due to lake warming seem to favour this cyanobacterial species, its dominance is partly attributed to factors conferring grazing resistance. The rigid structure of the cyanobacterial filaments and toxic secondary metabolites (e.g. microcystins) protect against diverse grazers. Nonetheless, species of the protistan genus Nuclearia (Nucleariidae, Opisthokonta) are able to overcome this grazing protection. Time lapse video documentation served as tool to record slow feeding processes of N. thermophila and N. delicatula. Three different feeding strategies could be distinguished: (i) Phagocytosis of small fragments, (ii) serial break-ups of cyanobacterial cells and (iii) bending and breaking of filaments. While observations revealed mechanical manipulation to be important for the efficient breakdown of P. rubescens filaments, the toxin microcystin had no pronounced negative effects on nucleariid cells. Growth experiments with N. thermophila/N. delicatula and different accompanying bacterial assemblages pointed to a pivotal role of distinct prokaryotic species for toxin degradation and for the growth success of the protists. Thus, the synergistic effect of nucleariids and specific bacteria favours an efficient degradation of P. rubescens along with its toxin.
Collapse
|
9
|
Kim E, Sprung B, Duhamel S, Filardi C, Kyoon Shin M. Oligotrophic lagoons of the South Pacific Ocean are home to a surprising number of novel eukaryotic microorganisms. Environ Microbiol 2016; 18:4549-4563. [PMID: 27581800 DOI: 10.1111/1462-2920.13523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Abstract
The diversity of microbial eukaryotes was surveyed by environmental sequencing from tropical lagoon sites of the South Pacific, collected through the American Museum of Natural History (AMNH)'s Explore21 expedition to the Solomon Islands in September 2013. The sampled lagoons presented low nutrient concentrations typical of oligotrophic waters, but contained levels of chlorophyll a, a proxy for phytoplankton biomass, characteristic of meso- to eutrophic waters. Two 18S rDNA hypervariable sites, the V4 and V8-V9 regions, were amplified from the total of eight lagoon samples and sequenced on the MiSeq system. After assembly, clustering at 97% similarity, and removal of singletons and chimeras, a total of 2741 (V4) and 2606 (V8-V9) operational taxonomic units (OTUs) were identified. Taxonomic annotation of these reads, including phylogeny, was based on a combination of automated pipeline and manual inspection. About 18.4% (V4) and 13.8% (V8-V9) of the OTUs could not be assigned to any of the known eukaryotic groups. Of these, we focused on OTUs that were not divergent and possessed multiple sources of evidence for their existence. Phylogenetic analyses of these sequences revealed more than ten branches that might represent new deeply-branching lineages of microbial eukaryotes, currently without any cultured representatives or morphological information.
Collapse
Affiliation(s)
- Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Ben Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Division of Biology and Paleo Environment, Columbia University, Palisades, NY, 10964, USA
| | - Christopher Filardi
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, 10024, USA
| | - Mann Kyoon Shin
- Department of Biological Sciences, University of Ulsan, Nam-Gu, Ulsan, 44610, South Korea
| |
Collapse
|
10
|
Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. HARMFUL ALGAE 2016; 55:97-111. [PMID: 28073551 DOI: 10.1016/j.hal.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
Many degraded waterbodies around the world are subject to strong proliferations of cyanobacteria - notorious for their toxicity, high biomass build-up and negative impacts on aquatic food webs - the presence of which puts serious limits on the human use of affected water bodies. Cyanobacterial blooms are largely regarded as trophic dead ends since they are a relatively poor food source for zooplankton. As a consequence, their population dynamics are generally attributed to changes in abiotic conditions (bottom-up control). Blooms however generally contain a vast and diverse community of micro-organisms of which some have shown devastating effects on cyanobacterial biomass. For Microcystis, one of the most common bloom-forming cyanobacteria worldwide, a high number of micro-organisms (about 120 taxa) including viruses, bacteria, microfungi, different groups of heterotrophic protists, other cyanobacteria and several eukaryotic microalgal groups are currently known to negatively affect its growth by infection and predation or by the production of allelopathic compounds. Although many of these specifically target Microcystis, sharp declines of Microcystis biomass in nature are only rarely assigned to these antagonistic microbiota. The commonly found strain specificity of their interactions may largely preclude strong antagonistic effects on Microcystis population levels but may however induce compositional shifts that can change ecological properties such as bloom toxicity. These highly specific interactions may form the basis of a continuous arms race (co-evolution) between Microcystis and its antagonists which potentially limits the possibilities for (micro)biological bloom control.
Collapse
Affiliation(s)
- Jeroen Van Wichelen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium.
| | - Pieter Vanormelingen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Geoffrey A Codd
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| |
Collapse
|
11
|
Kamikawa R, Shiratori T, Ishida KI, Miyashita H, Roger AJ. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans. Genome Biol Evol 2016; 8:458-66. [PMID: 26833505 PMCID: PMC4779616 DOI: 10.1093/gbe/evw011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Takashi Shiratori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Abstract
The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.
Collapse
|
13
|
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 2014; 81:71-85. [DOI: 10.1016/j.ympev.2014.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/02/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023]
|
14
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Heger TJ, Edgcomb VP, Kim E, Lukeš J, Leander BS, Yubuki N. A Resurgence in Field Research is Essential to Better Understand the Diversity, Ecology, and Evolution of Microbial Eukaryotes. J Eukaryot Microbiol 2014; 61:214-23. [DOI: 10.1111/jeu.12095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Thierry J. Heger
- Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Virginia P. Edgcomb
- Geology and Geophysics Department; Woods Hole Oceanographic Institution; Woods Hole Massachusetts 02543 USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology; American Museum of Natural History; New York New York 10024 USA
| | - Julius Lukeš
- Institute of Parasitology; Biology Centre; Czech Academy of Sciences and Faculty of Science; University of South Bohemia; 37005 České Budějovice Czech Republic
| | - Brian S. Leander
- Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Naoji Yubuki
- Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
16
|
Schallenberg-Rüdinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol 2013; 10:1549-56. [PMID: 23899506 DOI: 10.4161/rna.25755] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages.
Collapse
Affiliation(s)
| | - Henning Lenz
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| | - Monika Polsakiewicz
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology; Case Western Reserve University; Cleveland, OH USA
| | - Volker Knoop
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| |
Collapse
|
17
|
Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:230-244. [PMID: 23398214 DOI: 10.1111/tpj.12145] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 05/28/2023]
Abstract
The architecture of eukaryotic cells is underpinned by complex arrrays of microtubules that stem from an organizing center, referred to as the MTOC. With few exceptions, MTOCs consist of two basal bodies that anchor flagellar axonemes and different configurations of microtubular roots. Variations in the structure of this cytoskeletal system, also referred to as the 'flagellar apparatus', reflect phylogenetic relationships and provide compelling evidence for inferring the overall tree of eukaryotes. However, reconstructions and subsequent comparisons of the flagellar apparatus are challenging, because these studies require sophisticated microscopy, spatial reasoning and detailed terminology. In an attempt to understand the unifying features of MTOCs and broad patterns of cytoskeletal homology across the tree of eukaryotes, we present a comprehensive overview of the eukaryotic flagellar apparatus within a modern molecular phylogenetic context. Specifically, we used the known cytoskeletal diversity within major groups of eukaryotes to infer the unifying features (ancestral states) for the flagellar apparatus in the Plantae, Opisthokonta, Amoebozoa, Stramenopiles, Alveolata, Rhizaria, Excavata, Cryptophyta, Haptophyta, Apusozoa, Breviata and Collodictyonidae. We then mapped these data onto the tree of eukaryotes in order to trace broad patterns of trait changes during the evolutionary history of the flagellar apparatus. This synthesis suggests that: (i) the most recent ancestor of all eukaryotes already had a complex flagellar apparatus, (ii) homologous traits associated with the flagellar apparatus have a punctate distribution across the tree of eukaryotes, and (iii) streamlining (trait losses) of the ancestral flagellar apparatus occurred several times independently in eukaryotes.
Collapse
Affiliation(s)
- Naoji Yubuki
- The Department of Botany, Beaty Biodiversity Research Centre and Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
18
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
19
|
Yabuki A, Ishida KI, Cavalier-Smith T. Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist 2012; 164:75-88. [PMID: 22682062 DOI: 10.1016/j.protis.2012.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 12/17/2022]
Abstract
We report the ultrastructure, 18S and 28S rDNA sequences, and phylogenetic position of a distinctive free-living heterotrophic filose protist, Rigifila ramosa n. gen., n. sp., from a freshwater paddyfield. Rigifila lacks cilia and has a semi-rigid, radially symmetric, well-rounded, partially microtubule-supported, dorsal pellicle, and flat mitochodrial cristae. From a central aperture in a ventral depression emerges a protoplasmic stem that branches into several branching filopodia that draw bacteria to it. Electron microscopy reveals a general cell structure similar to Micronuclearia, the only non-flagellate previously known in Apusozoa; the large basal vacuole is probably an unusual giant contractile vacuole. Phylogenetic analysis of concatenated rDNA sequences groups Rigifila and Micronuclearia as sisters with maximal statistical support. However, novel morphological differences unique to Rigifila, notably a double (not single) proteinaceous layer beneath the cell membrane, and cortical microtubules, lead us to place it in a new family Rigifilidae. Our morphological and molecular analyses show that Rigifila is the closest known relative of Micronuclearia. Therefore we group Micronucleariidae and Rigifilidae as a new order Rigifilida within the existing class Hilomonadea, which now excludes planomonads. Rigifilida groups weakly with Collodictyon (Diphyllatea). We discuss the possible relationships of Rigifilida to other Apusozoa and Diphyllatea.
Collapse
Affiliation(s)
- Akinori Yabuki
- Japan Agency for Marine-Earth and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | | | | |
Collapse
|
20
|
Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. Collodictyon--an ancient lineage in the tree of eukaryotes. Mol Biol Evol 2012; 29:1557-68. [PMID: 22319147 PMCID: PMC3351787 DOI: 10.1093/molbev/mss001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution.
Collapse
Affiliation(s)
- Sen Zhao
- Microbial Evolution Research Group, Department of Biology, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
22
|
Cavalier-Smith T, Chao EE. Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species. Protist 2010; 161:549-76. [PMID: 20537943 DOI: 10.1016/j.protis.2010.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 03/20/2010] [Indexed: 11/25/2022]
Abstract
Apusomonadida (Apusomonas; Amastigomonas) are understudied gliding zooflagellates. We divide Amastigomonas into five genera, three new: Podomonas; Manchomonas; Multimonas. Microscopy and 18S rDNA sequences establish three new marine species (Podomonas magna; P. capensis; Multimonas media) and a new cyst-forming non-marine species from the surface of ivy leaves (Thecamonas oxoniensis). We consider the soil and freshwater Amastigomonas debruynei, caudata, and borokensis generically distinct from marine Thecamonas. We establish the new combination Multimonas marina (formerly Cercomonas or Amastigomonas). We studied by DIC microscopy and 18S rDNA sequencing three strains microscopically indistinguishable from marine Thecamonas trahens and argue that marine strains of almost identical sequence and appearance (visible largely acronematic cilia) were previously misidentified as Am. debruynei. We argue that 'Amastigomonas sp.' ATCC50062, whose 18S rRNA was sequenced previously and whose complete genome is being sequenced, is T. trahens. We include electron micrographs of T. aff. trahens, P. capensis and magna; ultrastructural cytoskeletal differences between P. capensis, Thecamonas, and Manchomonas (=Amastigomonas) bermudensis comb. n. allow novel functional interpretations of apusomonad evolution. On 18S rDNA trees Apusomonas and Manchomonas form a robust clade (Apusomonadinae), but Thecomonas trahens, T. oxoniensis, Multimonas, and Podomonas all branch deeply but unstably. Apusomonadida and Planomonas are weakly sister to opisthokonts.
Collapse
|
23
|
Cavalier-Smith T, Lewis R, Chao EE, Oates B, Bass D. Morphology and Phylogeny of Sainouron acronematica sp. n. and the Ultrastructural Unity of Cercozoa. Protist 2008; 159:591-620. [DOI: 10.1016/j.protis.2008.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/27/2008] [Indexed: 11/30/2022]
|
24
|
Cavalier-Smith T, Chao EE, Stechmann A, Oates B, Nikolaev S. Planomonadida ord. nov. (Apusozoa): Ultrastructural Affinity with Micronuclearia podoventralis and Deep Divergences within Planomonas gen. nov. Protist 2008; 159:535-62. [DOI: 10.1016/j.protis.2008.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
|
25
|
Walker G. Meeting Report: 16th Meeting of the International Society for Evolutionary Protistology; Wrocław, Poland, August 2–5, 2006 (ISEP XVI). Protist 2007; 158:5-19. [PMID: 17166769 DOI: 10.1016/j.protis.2006.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Giselle Walker
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
26
|
Nikolaev SI, Berney C, Petrov NB, Mylnikov AP, Fahrni JF, Pawlowski J. Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. Int J Syst Evol Microbiol 2006; 56:1449-1458. [PMID: 16738126 DOI: 10.1099/ijs.0.63763-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent molecular phylogenetic studies have led to the erection of the phylum Amoebozoa, uniting naked and testate lobose amoebae, the mycetozoan slime moulds and amitochondriate amoeboid protists (Archamoebae). Molecular data together with ultrastructural evidence have suggested a close relationship between Mycetozoa and Archamoebae, classified together in the Conosea, which was named after the cone of microtubules that, when present, is characteristic of their kinetids. However, the relationships of conoseans to other amoebozoans remain unclear. Here, we obtained the complete small-subunit (SSU) rRNA gene sequence (2746 bp) of the enigmatic, multiflagellated protist Multicilia marina, which has formerly been classified either in a distinct phylum, Multiflagellata, or among lobose amoebae. Our study clearly shows that Multicilia marina belongs to the Amoebozoa. Phylogenetic analyses including 60 amoebozoan SSU rRNA gene sequences revealed that Multicilia marina branches at the base of the Conosea, together with another flagellated amoebozoan, Phalansterium solitarium, as well as with Gephyramoeba sp., Filamoeba nolandi and two unidentified amoebae. This is the first report showing strong support for a clade containing all flagellated amoebozoans and we discuss the position of the root of the phylum Amoebozoa in the light of this result.
Collapse
Affiliation(s)
- Sergey I Nikolaev
- Department of Evolutionary Biochemistry, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Cédric Berney
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Nikolai B Petrov
- Department of Evolutionary Biochemistry, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Alexandre P Mylnikov
- Institute of Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya obl., Borok, Russia
| | - José F Fahrni
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Jan Pawlowski
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|