1
|
Goossens PL. Bacillus anthracis, "la maladie du charbon", Toxins, and Institut Pasteur. Toxins (Basel) 2024; 16:66. [PMID: 38393144 PMCID: PMC10891547 DOI: 10.3390/toxins16020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.
Collapse
|
2
|
Overlapping and Distinct Functions of the Paralogous PagR Regulators of Bacillus anthracis. J Bacteriol 2022; 204:e0020822. [PMID: 36005808 PMCID: PMC9487532 DOI: 10.1128/jb.00208-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Bacillus anthracis pagA gene, encoding the protective antigen component of anthrax toxin, is part of a bicistronic operon on pXO1 that codes for its own repressor, PagR1. In addition to the pagAR1 operon, PagR1 regulates sap and eag, two chromosome genes encoding components of the surface layer, a mounting structure for surface proteins involved in virulence. Genomic studies have revealed a PagR1 paralog, PagR2, encoded by a gene on pXO2. The amino acid sequences of the paralogues are 71% identical and show similarity to the ArsR family of transcription regulators. We determined that the expression of either rPagR1 or rPagR2 in a ΔpagR1 pXO1+/pXO2- (PagR1-PagR2) background repressed the expression of pagA, sap, eag, and a newly discovered target, atxA, encoding virulence activator AtxA. Despite the redundancy in PagR1 and PagR2 function, we determined that purified rPagR1 bound DNA corresponding to the control regions of all four target genes and existed as a dimer in cell lysates, whereas rPagR2 exhibited weak binding to the DNA of the pagA and atxA promoters, did not bind sap or eag promoter DNA, and did not appear as a dimer in cell lysates. A single amino acid change in PagR2, S81Y, designed to match the native Y81 of PagR1, allowed for DNA-binding to the sap and eag promoters. Moreover, the S81Y mutation allowed for the detection of PagR2 homomultimers in coaffinity purification experiments. Our results expand our knowledge of the roles of the paralogues in B. anthracis gene expression and provide a potential mechanistic basis for differences in the functions of these repressors. IMPORTANCE The protective antigen component of the anthrax toxin is essential for the delivery of the enzymatic components of the toxin into host target cells. The toxin genes and other virulence genes of B. anthracis are regulated by multiple trans-acting regulators that respond to a variety of host-related signals. PagR1, one such trans-acting regulator, connects the regulation of plasmid-encoded and chromosome-encoded virulence genes by controlling both protective antigen and surface layer protein expression. Whether PagR2, a paralog of PagR1, also functions as a trans-acting regulator was unknown. This work advances our knowledge of the complex model of virulence regulation in B. anthracis and furthers our understanding of the intriguing evolution of this pathogen.
Collapse
|
3
|
Rom JS, Hart MT, McIver KS. PRD-Containing Virulence Regulators (PCVRs) in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:772874. [PMID: 34737980 PMCID: PMC8560693 DOI: 10.3389/fcimb.2021.772874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.
Collapse
Affiliation(s)
- Joseph S Rom
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Meaghan T Hart
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Kevin S McIver
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
4
|
Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of Bacillus anthracis. J Bacteriol 2020; 202:JB.00653-19. [PMID: 32071095 DOI: 10.1128/jb.00653-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently identified bacterial second messenger that regulates biological processes. In this study, we found that inactivation of two c-di-AMP phosphodiesterases (PDEs), GdpP and PgpH, resulted in accumulation of 3.8-fold higher c-di-AMP levels than in the parental strain Sterne in Bacillus anthracis and inhibited bacterial growth. Moreover, excess c-di-AMP accumulation decreased bacterial toxin expression, increased sensitivity to osmotic stress and detergent, and attenuated virulence in both C57BL/6J and A/J mice. Complementation of the PDE mutant with a plasmid carrying gdpP or pgpH in trans from a Pspac promoter restored bacterial growth, virulence factor expression, and resistance to detergent. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in B. anthracis that is important for host-pathogen interaction.IMPORTANCE Anthrax is an ancient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis Vegetative cells of this species produce anthrax toxin proteins and S-layer components during infection of mammalian hosts. So far, how the expression of these virulence factors is regulated remains largely unknown. Our results suggest that excess elevated c-di-AMP levels inhibit bacterial growth and reduce expression of S-layer components and anthracis toxins as well as reduce virulence in a mouse model of disease. These results indicate that c-di-AMP signaling plays crucial roles in B. anthracis biology and disease.
Collapse
|
5
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
6
|
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80-100. [PMID: 24886836 DOI: 10.1016/j.mimet.2014.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. However, recent advances have developed many useful techniques taking into account the house-keeping genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and 26S, 28S, β-tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is advantageous because it exploits simultaneously both conventional as well as molecular identification techniques. In this review, certain aspects of the merits and limitations of different methods for molecular identification and systematics of microorganisms have been discussed. The major advantages of the polyphasic approach have also been described taking into account certain groups of bacteria as case studies to arrive at a consensus approach to microbial identification.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| |
Collapse
|
7
|
McKenzie AT, Pomerantsev AP, Sastalla I, Martens C, Ricklefs SM, Virtaneva K, Anzick S, Porcella SF, Leppla SH. Transcriptome analysis identifies Bacillus anthracis genes that respond to CO2 through an AtxA-dependent mechanism. BMC Genomics 2014; 15:229. [PMID: 24661624 PMCID: PMC3987803 DOI: 10.1186/1471-2164-15-229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Abstract
Background Upon infection of a mammalian host, Bacillus anthracis responds to host cues, and particularly to elevated temperature (37°C) and bicarbonate/CO2 concentrations, with increased expression of virulence factors that include the anthrax toxins and extracellular capsular layer. This response requires the presence of the pXO1 virulence plasmid-encoded pleiotropic regulator AtxA. To better understand the genetic basis of this response, we utilized a controlled in vitro system and Next Generation sequencing to determine and compare RNA expression profiles of the parental strain and an isogenic AtxA-deficient strain in a 2 × 2 factorial design with growth environments containing or lacking carbon dioxide. Results We found 15 pXO1-encoded genes and 3 chromosomal genes that were strongly regulated by the separate or synergistic actions of AtxA and carbon dioxide. The majority of the regulated genes responded to both AtxA and carbon dioxide rather than to just one of these factors. Interestingly, we identified two previously unrecognized small RNAs that are highly expressed under physiological carbon dioxide concentrations in an AtxA-dependent manner. Expression levels of the two small RNAs were found to be higher than that of any other gene differentially expressed in response to these conditions. Secondary structure and small RNA-mRNA binding predictions for the two small RNAs suggest that they may perform important functions in regulating B. anthracis virulence. Conclusions A majority of genes on the virulence plasmid pXO1 that are regulated by the presence of either CO2 or AtxA separately are also regulated synergistically in the presence of both. These results also elucidate novel pXO1-encoded small RNAs that are associated with virulence conditions.
Collapse
Affiliation(s)
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Identification of CodY targets in Bacillus anthracis by genome-wide in vitro binding analysis. J Bacteriol 2013; 195:1204-13. [PMID: 23292769 DOI: 10.1128/jb.02041-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Gram-positive bacteria, CodY is an important regulator of genes whose expression changes under conditions of nutrient limitation. Bacillus anthracis CodY represses or activates directly or indirectly approximately 500 genes. Affinity purification of CodY-DNA complexes was used to identify the direct targets of CodY. Of the 389 DNA binding sites that were copurified with CodY, 132 sites were in or near the regulatory regions governing the expression of 197 CodY-controlled genes, indicating that CodY controls many other genes indirectly. CodY-binding specificity was verified using electrophoretic mobility shift and DNase I footprinting assays for three CodY targets. Analysis of the bound sequences led to the identification of a B. anthracis CodY-binding consensus motif that was found in 366 of the 389 affinity-purified DNA regions. Regulation of the expression of the two genes directly controlled by CodY, sap and eag, encoding the two surface layer (S-layer) proteins, was analyzed further by monitoring the expression of transcriptional lacZ reporter fusions in parental and codY mutant strains. CodY proved to be a direct repressor of both sap and eag expression. Since the expression of the S-layer genes is under the control of both CodY and PagR (a regulator that responds to bicarbonate), their expression levels respond to both metabolic and environmental cues.
Collapse
|
10
|
Fouet A. AtxA, a Bacillus anthracis global virulence regulator. Res Microbiol 2010; 161:735-42. [PMID: 20863885 DOI: 10.1016/j.resmic.2010.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022]
Abstract
Fifteen years ago, AtxA was isolated as a toxin gene activator and five years later it was shown to be a Bacillus anthracis master regulator. AtxA controls the expression of more than a hundred genes belonging to all genetic elements, the chromosome and both virulence plasmids, including those encoding the major virulence factors. AtxA can activate or repress gene expression. The mechanism by which AtxA exerts its control is unknown; it is indirect on some genes but may be direct on others. The expression of many AtxA-controlled genes is induced by the presence of bicarbonate/CO(2). AtxA links the metabolic state and virulence gene expression.
Collapse
Affiliation(s)
- Agnès Fouet
- Institut Pasteur, Toxines et Pathogénie Bactérienne, Département de Microbiologie, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
11
|
Characterization and separate activities of the two promoters of the Lactobacillus brevis S-layer protein gene. Appl Microbiol Biotechnol 2010; 87:657-68. [PMID: 20229202 DOI: 10.1007/s00253-010-2500-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 02/03/2023]
Abstract
Lactobacillus brevis ATCC 8287 possesses a surface (S)-layer protein SlpA, the gene of which is very efficiently expressed. To study the expression signals of the slpA gene, several different reporter plasmids, based on the low-copy-number vector pKTH2121 derived from pGK12, were constructed. In the reporter plasmids, only one of the two consecutive slpA promoters (P1, P2) was placed upstream of the Lactobacillus helveticus proline iminopeptidase (pepI) gene, and defined parts of the sequences upstream of the promoter were deleted. As indicated by reporter enzyme activities, both promoters were efficiently recognized at different growth stages in L. brevis. An upstream region important for the full activity of P1 was identified. The quantification of pepI-specific mRNA in L. brevis and SDS-PAGE indicated that slpA expression is not regulated at the post-transcriptional level and revealed no regulation of slpA promoters under the conditions tested. The high expression levels of both slpA and the reporter gene in L. brevis were found to remain at a high level after the addition of bile or pancreatin in the growth medium or after a change of the carbon source, which is advantageous for the potential use of SlpA as a carrier in live oral vaccines.
Collapse
|
12
|
Fouet A. The surface of Bacillus anthracis. Mol Aspects Med 2009; 30:374-85. [PMID: 19607856 DOI: 10.1016/j.mam.2009.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Bacillus anthracis is a Gram positive organism possessing a complex parietal structure. An S-layer, a bi-dimensional crystalline layer, and a peptidic capsule surround the thick peptidoglycan of bacilli harvested during infection. A review of the current literature indicates that elements from each of these three structures, as well as membrane components, have been studied. So-called cell-wall secondary polymers, be they attached to the cell-wall or to the membrane play important functions, either per se or because they permit the anchoring of proteins. Some surface proteins, whichever compartment they are attached to, play, as had been hypothesized, key roles in virulence. Others, of yet unknown function, are nevertheless expressed in vivo. This review will focus on well-studied polymers or proteins and indicate, when appropriate, the mechanisms by which they are targeted to their respective locations.
Collapse
Affiliation(s)
- Agnès Fouet
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA2172, F-75015 Paris, France.
| |
Collapse
|
13
|
Passalacqua KD, Varadarajan A, Byrd B, Bergman NH. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. PLoS One 2009; 4:e4904. [PMID: 19295911 PMCID: PMC2654142 DOI: 10.1371/journal.pone.0004904] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Background Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains. Methodology/Principal Findings Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group—a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F2), and an avirulent B. cereus strain (10987)—during exponential growth in two distinct atmospheric environments: 14% CO2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment. Conclusions/Significance We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies.
Collapse
Affiliation(s)
- Karla D. Passalacqua
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anjana Varadarajan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Benjamin Byrd
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nicholas H. Bergman
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Van der Auwera G, Mahillon J. Transcriptional analysis of the conjugative plasmid pAW63 from Bacillus thuringiensis. Plasmid 2008; 60:190-9. [PMID: 18761035 DOI: 10.1016/j.plasmid.2008.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The broad-host range plasmid pAW63 is a model for the study of molecular mechanisms associated with conjugation in the Gram-positive Bacillus cereus group. Its main features are a conjugative apparatus that includes Type IV Secretion System-like components and two Group II introns, B.th.I1 and B.th.I2, located within conjugation genes, as well as a putative regulatory control circuit. Furthermore, pAW63 shares a common backbone with pXO2, the second virulence plasmid of Bacillus anthracis, and with pBT9727 from the pathogenic Bacillus thuringiensis subsp. konkukian strain 97-27. In this study, the transcriptome of pAW63 was investigated using a custom DNA microarray, providing insight into the genetic clockwork of this conjugative plasmid. Gene expression profiles suggested that in the absence of mating partners, a partial 'standby mode' was in effect, with little production of many of the structural elements thought to be involved in mating pair formation and DNA transfer, while components of a proposed quorum sensing mechanism were actively expressed. Intron splicing was demonstrated for the B.th.I2 intron.
Collapse
Affiliation(s)
- Géraldine Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
15
|
Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 2008; 16:215-21. [PMID: 18374574 DOI: 10.1016/j.tim.2008.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/21/2008] [Accepted: 01/30/2008] [Indexed: 11/22/2022]
Abstract
The conversion of a bacterium from a non-pathogenic to a pathogenic existence is usually associated with the acquisition of virulence factors, the genes of which gain entry through bacteriophage infection, transposable elements or plasmid transfer. Pathogenesis research is mostly focused on how these factors enable the bacterium to infect the host or evade the repertoire of host defenses. Less effort is expended on understanding how the invading genes are affected by the complex regulatory circuits of the bacterium and how virulence is the result of converting these regulatory circuits to make them complicit with pathogenesis. An example of such a conversion is seen in Bacillus anthracis, and how acquired plasmid regulatory functions affect the activity of the regulatory processes of the bacterium, and vice versa, is now being revealed.
Collapse
|
16
|
Delvecchio VG, Connolly JP, Alefantis TG, Walz A, Quan MA, Patra G, Ashton JM, Whittington JT, Chafin RD, Liang X, Grewal P, Khan AS, Mujer CV. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Appl Environ Microbiol 2006; 72:6355-63. [PMID: 16957262 PMCID: PMC1563598 DOI: 10.1128/aem.00455-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.
Collapse
MESH Headings
- Antigens, Bacterial/genetics
- Antigens, Bacterial/isolation & purification
- Bacillus anthracis/chemistry
- Bacillus anthracis/genetics
- Bacillus anthracis/immunology
- Bacillus cereus/chemistry
- Bacillus cereus/genetics
- Bacillus cereus/immunology
- Bacillus thuringiensis/chemistry
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Electrophoresis, Gel, Two-Dimensional
- Genes, Bacterial
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/isolation & purification
- Open Reading Frames
- Proteomics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spores, Bacterial/chemistry
- Spores, Bacterial/genetics
- Spores, Bacterial/immunology
- Virulence/immunology
Collapse
|
17
|
Arsène-Ploetze F, Kugler V, Martinussen J, Bringel F. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1. J Bacteriol 2006; 188:8607-16. [PMID: 17041052 PMCID: PMC1698236 DOI: 10.1128/jb.00985-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic carbon (IC), such as bicarbonate or carbon dioxide, stimulates the growth of Lactobacillus plantarum. At low IC levels, one-third of natural isolated L. plantarum strains are nutritionally dependent on exogenous arginine and pyrimidine, a phenotype previously defined as high-CO2-requiring (HCR) prototrophy. IC enrichment significantly decreased the amounts of the enzymes in the pyrimidine biosynthetic pathway encoded by the pyrR1BCAa1Ab1DFE operon, as demonstrated by proteomic analysis. Northern blot and reverse transcription-PCR experiments demonstrated that IC levels regulated pyr genes mainly at the level of transcription or RNA stability. Two putative PyrR regulators with 62% amino acid identity are present in the L. plantarum genome. PyrR1 is an RNA-binding protein that regulates the pyr genes in response to pyrimidine availability by a mechanism of transcriptional attenuation. In this work, the role of PyrR2 was investigated by allelic gene replacement. Unlike the pyrR1 mutant, the DeltapyrR2 strain acquired a demand for both pyrimidines and arginine unless bicarbonate or CO2 was present at high concentrations, which is known as an HCR phenotype. Analysis of the IC- and pyrimidine-mediated regulation in pyrR1 and pyrR2 mutants suggested that only PyrR2 positively regulates the expression levels of the pyr genes in response to IC levels but had no effect on pyrimidine-mediated repression. A model is proposed for the respective roles of PyrR1 and PyrR2 in the pyr regulon expression.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- UMR7156 Université Louis Pasteur/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083 Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology (Reading) 2006; 152:923-935. [PMID: 16549657 DOI: 10.1099/mic.0.28673-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface (S)-layer gene region of the Gram-positive bacterium Corynebacterium glutamicum ATCC 14067 was identified on fosmid clones, sequenced and compared with the genome sequence of C. glutamicum ATCC 13032, whose cell surface is devoid of an ordered S-layer lattice. A 5·97 kb DNA region that is absent from the C. glutamicum ATCC 13032 chromosome was identified. This region includes cspB, the structural gene encoding the S-layer protomer PS2, and six additional coding sequences. PCR experiments demonstrated that the respective DNA region is conserved in different C. glutamicum wild-type strains capable of S-layer formation. The DNA region is flanked by a 7 bp direct repeat, suggesting that illegitimate recombination might be responsible for gene loss in C. glutamicum ATCC 13032. Transfer of the cloned cspB gene restored the PS2− phenotype of C. glutamicum ATCC 13032, as confirmed by visualization of the PS2 proteins by SDS-PAGE and imaging of ordered hexagonal S-layer lattices on living C. glutamicum cells by atomic force microscopy. Furthermore, the promoter of the cspB gene was mapped by 5′ rapid amplification of cDNA ends PCR and the corresponding DNA fragment was used in DNA affinity purification assays. A 30 kDa protein specifically binding to the promoter region of the cspB gene was purified. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and peptide mass fingerprinting of the purified protein led to the identification of the putative transcriptional regulator Cg2831, belonging to the LuxR regulatory protein family. Disruption of the cg2831 gene in C. glutamicum resulted in an almost complete loss of PS2 synthesis. These results suggested that Cg2831 is a transcriptional activator of cspB gene expression in C. glutamicum.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Corynebacterium glutamicum/genetics
- Corynebacterium glutamicum/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Gene Library
- Genomic Islands
- Mass Spectrometry
- Microscopy, Atomic Force
- Molecular Sequence Data
- Open Reading Frames
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proteome/analysis
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Repressor Proteins/physiology
- Sequence Analysis, DNA
- Sequence Homology
- Synteny
- Terminal Repeat Sequences
- Trans-Activators/genetics
- Trans-Activators/isolation & purification
- Trans-Activators/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Nicole Hansmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Albersmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Thomas Damberg
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Robert Ros
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Dario Anselmetti
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
19
|
Fouet A, Mock M. Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 2006; 9:160-6. [PMID: 16529984 DOI: 10.1016/j.mib.2006.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a Gram-positive sporulating bacterium. Its life-cycle can be divided schematically into two phases: multiplication in the mammalian host and persistence in the soil. A central regulator AtxA interferes with expression of more than 70 genes in vitro and an undefined number ex vivo. The exact molecular mechanism of action of AtxA is unknown, but the involvement of cascades of relay regulators has been described. Other regulators have also been implicated in the regulatory networks; these are mainly transition state regulators, which have been studied in other Bacillus species. They contribute to the regulation of expression of virulence- and persistence-factor genes, and to the regulation of atxA itself.
Collapse
Affiliation(s)
- Agnès Fouet
- Toxines et Pathogénie Bactérienne, CNRS URA 2172, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
20
|
Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Mühlschlegel FA. Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. EUKARYOTIC CELL 2006; 5:103-11. [PMID: 16400172 PMCID: PMC1360268 DOI: 10.1128/ec.5.1.103-111.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two beta-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.
Collapse
|
21
|
Sylvestre P, Couture-Tosi E, Mock M. Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the bacillus anthracis exosporium. J Bacteriol 2005; 187:5122-8. [PMID: 16030205 PMCID: PMC1196022 DOI: 10.1128/jb.187.15.5122-5128.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus anthracis, the etiological agent of anthrax, and the closely related species Bacillus cereus and Bacillus thuringiensis, possess an exosporium, which is the outermost structure surrounding the mature spore. It consists of a paracrystalline basal layer and a hair-like outer layer. To date, the structural contribution of only one exosporium component, the collagen-like glycoprotein BclA, has been described. It is the structural component of the hair-like filaments. Here, we describe two other proteins, ExsFA and ExsFB, which are probably organized in multimeric complexes with other exosporium components, including BclA. Single and double exsF deletion mutants were constructed and analyzed. We found that inactivation of exsF genes affects the BclA content of spores. BclA is produced by all mutants. However, it is partially and totally released after mother cell lysis of the DeltaexsFA and DeltaexsFA DeltaexsFB mutant strains, respectively. Electron microscopy revealed that the exsF mutant spores have defective exosporia. The DeltaexsFA and DeltaexsFA DeltaexsFB spore surfaces are partially and totally devoid of filaments, respectively. Moreover, for all mutants, the crystalline basal layer appeared unstable. This instability revealed the presence of two distinct crystalline arrays that are sloughed off from the spore surface. These results indicate that ExsF proteins are required for the proper localization of BclA on the spore surface and for the stability of the exosporium crystalline layers.
Collapse
Affiliation(s)
- Patricia Sylvestre
- Unité Toxine et Pathogénie Bactériennes, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cédex 15, France
| | | | | |
Collapse
|