1
|
Lancellotti P, Davin L. Highlights and advances in cardiology research. Acta Cardiol 2024; 79:1059-1063. [PMID: 39716989 DOI: 10.1080/00015385.2024.2446102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Affiliation(s)
- Patrizio Lancellotti
- GIGA Institutes, Cardiovascular Sciences and Metabolism, Department of Cardiology, CHU Sart Tilman, University of Liège Hospital, Liège, Belgium
| | - Laurent Davin
- GIGA Institutes, Cardiovascular Sciences and Metabolism, Department of Cardiology, CHU Sart Tilman, University of Liège Hospital, Liège, Belgium
| |
Collapse
|
2
|
Nayak G, Dimitriadis K, Pyrpyris N, Manti M, Kamperidis N, Kamperidis V, Ziakas A, Tsioufis K. Gut Microbiome and Its Role in Valvular Heart Disease: Not a "Gutted" Relationship. Life (Basel) 2024; 14:527. [PMID: 38672797 PMCID: PMC11051562 DOI: 10.3390/life14040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The role of the gut microbiome (GM) and oral microbiome (OM) in cardiovascular disease (CVD) has been increasingly being understood in recent years. It is well known that GM is a risk factor for various CVD phenotypes, including hypertension, dyslipidemia, heart failure and atrial fibrillation. However, its role in valvular heart disease (VHD) is less well understood. Research shows that, direct, microbe-mediated and indirect, metabolite-mediated damage as a result of gut dysbiosis and environmental factors results in a subclinical, chronic, systemic inflammatory state, which promotes inflammatory cell infiltration in heart valves and subsequently, via pro-inflammatory molecules, initiates a cascade of reaction, resulting in valve calcification, fibrosis and dysfunction. This relationship between GM and VHD adds a pathophysiological link to the pathogenesis of VHD, which can be aimed therapeutically, in order to prevent or regress any risk for valvular pathologies. Therapeutic interventions include dietary modifications and lifestyle interventions, in order to influence environmental factors that can promote gut dysbiosis. Furthermore, the combination of probiotics and prebiotics, as well as fecal m transplantation and targeted treatment with inducers or inhibitors of microbial enzymes have showed promising results in animal and/or clinical studies, with the potential to reduce the inflammatory state and restore the normal gut flora in patients. This review, thus, is going to discuss the pathophysiological links behind the relationship of GM, CVD and VHD, as well as explore the recent data regarding the effect of GM-altering treatment in CVD, cardiac function and systemic inflammation.
Collapse
Affiliation(s)
- Gyanaranjan Nayak
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Magdalini Manti
- St Mark’s Hospital, Imperial College London, London HA1 3UJ, UK (N.K.)
| | | | - Vasileios Kamperidis
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Antonios Ziakas
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| |
Collapse
|
3
|
Xiong Z, Li J, Huang R, Zhou H, Xu X, Zhang S, Xie P, Li M, Guo Y, Liao X, Zhuang X. The gut microbe-derived metabolite trimethylamine-N-oxide induces aortic valve fibrosis via PERK/ATF-4 and IRE-1α/XBP-1s signaling in vitro and in vivo. Atherosclerosis 2024; 391:117431. [PMID: 38408412 DOI: 10.1016/j.atherosclerosis.2023.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND AND AIMS The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-β1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-β1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Li
- Institute of Guangdong Provincial Geriatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rihua Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Huimin Zhou
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xingfeng Xu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Shaozhao Zhang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Peihan Xie
- Department of Ultrasonography, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Miaohong Li
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yue Guo
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Reskovic Luksic V, Separovic Hanzevacki J, Trung MLN, Petitjean H, Lancellotti P. The burden and challenges of managing aortic stenosis. Acta Cardiol 2024; 79:98-100. [PMID: 38032272 DOI: 10.1080/00015385.2023.2286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Vlatka Reskovic Luksic
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jadranka Separovic Hanzevacki
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mai-Linh Nguyen Trung
- Department of Cardiology, CHU Sart Tilman, University of Liège Hospital, GIGA Cardiovascular Sciences, Liège, Belgium
| | - Hélène Petitjean
- Department of Cardiology, CHU Sart Tilman, University of Liège Hospital, GIGA Cardiovascular Sciences, Liège, Belgium
| | - Patrizio Lancellotti
- Department of Cardiology, CHU Sart Tilman, University of Liège Hospital, GIGA Cardiovascular Sciences, Liège, Belgium
| |
Collapse
|
5
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Nagarajan G, Govindan R, Poomarimuthu M, Andiappan R, Elango S, Maruthamuthu S, Mariakuttikan J, Kadiam S. The microbiome and rheumatic heart disease: current knowledge and future perspectives. Acta Cardiol 2023:1-9. [PMID: 37171266 DOI: 10.1080/00015385.2023.2207933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rheumatic heart disease (RHD) is a cardiovascular disease caused by an autoimmune response to group A Streptococcus (GAS) infection resulting in the damage of heart valves. RHD is the most commonly acquired heart disease among children and young adults with a global burden of over 40 million cases accounting for 306,000 deaths annually. Inflammation in the heart valves caused due to molecular mimicry between the GAS antigens and host cardiac proteins is facilitated by cytokines, cross-reactive antibodies and CD4+ T cells. The complex interaction between genetic and environmental factors linked with erratic events leads to the loss of immunological tolerance and autoimmunity in RHD. Despite extensive research on the etiopathogenesis of RHD, the precise mechanism underpinning the initiation of acute rheumatic fever (ARF) to the progression of RHD still remains elusive. Mounting evidences support the contribution of the human microbiome in the development of several immune-mediated diseases including rheumatoid arthritis, juvenile idiopathic arthritis, Kawasaki disease, inflammatory bowel disease and type 1 diabetes. The microbiome and their metabolites could play a crucial role in the integrity of the epithelial barrier, development of the immune system, inflammation and differentiation of T cell subsets. Consequently, microbiome dysbiosis might result in autoimmunity by molecular mimicry, epitope spreading and bystander activation. This review discusses various aspects of the interaction between the microbiome and the immune system in order to reveal causative links relating dysbiosis and autoimmune diseases with special emphasis on RHD.
Collapse
Affiliation(s)
- Gunavathy Nagarajan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Ramajayam Govindan
- Multidisciplinary Research Unit, Madurai Medical College, Madurai, India
| | | | - Rathinavel Andiappan
- Department of Cardio Vascular Thoracic Surgery, Madurai Medical College & Government Rajaji Hospital, Madurai, India
| | - Sivakumar Elango
- Institute of Child Health and Research Centre, Madurai Medical College & Government Rajaji Hospital, Madurai, India
| | - Stalinraja Maruthamuthu
- Department of Surgery, Immunogenetics and Transplantation Laboratory, University of California, San Francisco, CA, USA
| | | | - Sony Kadiam
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
7
|
Curini L, Alushi B, Christopher MR, Baldi S, Di Gloria L, Stefano P, Laganà A, Iannone L, Grubitzsch H, Landmesser U, Ramazzotti M, Niccolai E, Lauten A, Amedei A. The first taxonomic and functional characterization of human CAVD-associated microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:36-48. [PMID: 36789351 PMCID: PMC9896411 DOI: 10.15698/mic2023.02.791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Introduction Calcific aortic valve disease (CAVD) is the most common heart valve disorder, defined by a remodeling multistep process: namely, valve fibrosis with its area narrowing, impaired blood flow, and final calcification phase. Nowadays, the only treatment is the surgical valve replacement. As for other cardiovascular diseases, growing evidence suggest an active role of the immune system in the calcification process that could be modulated by the microbiota. To address this point, we aimed to investigate and characterize, for the first time, the presence of a valve microbiota and associated immune response in human CAVD. Method Calcified aortic valve (CAV) samples from twenty patients (11 from Germany and 9 from Italy) with diagnosis of severe symptomatic CAVD were used to assess the presence of infiltrating T cells, by cloning approach, and to characterize the valve microbiota, by 16S rRNA gene sequencing (NGS). Results We documented the presence of infiltrating T lymphocytes, especially the T helper subset, in CAV samples. Moreover, we found a tissue-associated microbiota in freshly collected CAV samples, which was significantly different in Italian and German patients, suggesting potential correlation with other cardiovascular risk factors. Conclusion The presence of microbiota in inflamed CAV samples represents the right trigger point to explain the valve calcification process, encouraging further studies to explore the potential link between bacteria and adaptive immune response and to define the critical role of local microbiota-immunity axis on CAVD development.
Collapse
Affiliation(s)
- Lavinia Curini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Brunilda Alushi
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK); Department of Interventional Cardiology, Klinik Vincentinum Augsburg, Germany
| | - Mary Roxana Christopher
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK)
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | - Anna Laganà
- Cardiac Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Luisa Iannone
- Cardiac Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Herko Grubitzsch
- Berlin Institute of Health; Department of Cardiology, German Heart Centre Berlin (DHZB)
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK); Berlin Institute of Health
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Alexander Lauten
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK); Department of Interventional Cardiology, Klinik Vincentinum Augsburg, Germany
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy.
,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50139 Florence, Italy.
,* Corresponding Author: Amedeo Amedei, Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; E-mail:
| |
Collapse
|
8
|
Jing W, Huang S, Xiang P, Huang J, Yu H. Dietary precursors and cardiovascular disease: A Mendelian randomization study. Front Cardiovasc Med 2023; 10:1061119. [PMID: 36844729 PMCID: PMC9947469 DOI: 10.3389/fcvm.2023.1061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Background The Dietary precursor has been identified as a contributor in the development of cardiovascular disease. However, it is inconsistent if dietary precursors could affect the process of cardiovascular disease. Methods Here we performed Mendelian randomization (MR) analysis of the data from genome-wide association study of European ancestry to evaluate the independent effects of three dietary precursors on cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), atrial fibrillation (AF), and valvular disease (VHD). Inverse variance weighting method was used for the MR estimation. Sensitivity was determined by MR-PRESSO analysis, weighted median analysis, MR-Egger analysis, and Leave-one-out analysis. Results We found that elevated choline level had a causal relationship with VHD [odds ratio (OR) = 1.087, 95% confidence interval (CI), 1.003-1.178, P = 0.041] and MI (OR = 1.250, 95% CI, 1.041-1.501, P = 0.017) by single-variable MR analysis. Furthermore, elevated carnitine level was associated with MI (OR = 5.007, 95% CI, 1.693-14.808, P = 0.004) and HF (OR = 2.176, 95% CI, 1.252-3.780, P = 0.006) risk. In addition, elevated phosphatidylcholine level can increase the risk of MI (OR = 1.197, 95% CI, 1.026-1.397, P = 0.022). Conclusion Our data show that choline increases VHD or MI risk, carnitine increases the risk of MI or HF, and phosphatidylcholine increases HF risk. These findings suggest the possibility that decrease in choline level in circulation may be able to reduce overall VHD or MI risk, reduce in carnitine level could be decrease MI and HF risks as well as decrease in phosphatidylcholine could reduce MI risk.
Collapse
Affiliation(s)
- Wangwei Jing
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shushi Huang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pingping Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiniu Huang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong Yu,
| |
Collapse
|
9
|
Fu B, Wang J, Wang L, Wang Q, Guo Z, Xu M, Jiang N. Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease. Front Cardiovasc Med 2022; 9:944521. [PMID: 36312243 PMCID: PMC9606238 DOI: 10.3389/fcvm.2022.944521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to define changes in the metabolic and protein profiles of patients with calcific aortic valve disease (CAVD). Methods and results We analyzed cardiac valve samples of patients with and without (control) CAVD (n = 24 per group) using untargeted metabolomics and tandem mass tag-based quantitative proteomics. Significantly different metabolites and proteins between the CAVD and control groups were screened; then, functional enrichment was analyzed. We analyzed co-expressed differential metabolites and proteins, and constructed a metabolite-protein-pathway network. The expression of key proteins was validated using western blotting. Differential analysis identified 229 metabolites in CAVD among which, 2-aminophenol, hydroxykynurenine, erythritol, carnosine, and choline were the top five. Proteomic analysis identified 549 differentially expressed proteins in CAVD, most of which were localized in the nuclear, cytoplasmic, extracellular, and plasma membranes. Levels of selenium binding protein 1 (SELENBP1) positively correlated with multiple metabolites. Adenosine triphosphate-binding cassette transporters, starch and sucrose metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and purine metabolism were key pathways in the network. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calcium2+/calmodulin-dependent protein kinase II delta (CAMK2D), and ATP binding cassette subfamily a member 8 (ABCA8) were identified as hub proteins in the metabolite-protein-pathway network as they interacted with ADP, glucose 6-phosphate, choline, and other proteins. Western blotting confirmed that ENPP1 was upregulated, whereas ABCA8 and CAMK2D were downregulated in CAVD samples. Conclusion The metabolic and protein profiles of cardiac valves from patients with CAVD significantly changed. The present findings provide a holistic view of the molecular mechanisms underlying CAVD that may lead to the development of novel diagnostic biomarkers and therapeutic targets to treat CAVD.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Postdoctoral Mobile Station, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Lianqun Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Zhigang Guo,
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,*Correspondence: Nan Jiang,
| |
Collapse
|
10
|
Kocyigit D, Zimetti F, Gurses KM, Zanotti I, Marchi C, Ståhlman M, Borén J, Canpinar H, Soyal MF, Guc D, Hazirolan T, Ozer N, Tokgozoglu L. Cholesterol efflux promoting function of high-density lipoproteins in calcific aortic valve stenosis. ATHEROSCLEROSIS PLUS 2021; 44:18-24. [PMID: 36644669 PMCID: PMC9833266 DOI: 10.1016/j.athplu.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Background and aims Cholesterol efflux capacity is a functional property of high-density lipoproteins (HDL) reflecting the efficiency of the atheroprotective reverse cholesterol transport process in humans. Its relationship with calcific aortic valve stenosis (CAVS) has not been fully assessed yet. Methods We evaluated HDL-CEC in a patient population with varying degrees of aortic valvular calcific disease, assessed using echocardiography and cardiac computed tomography. Measurement of biomarkers that reflect osteogenic and tissue remodeling, along with dietary and gut microbiota-derived metabolites were performed. Results Patients with moderate-severe CAVS had significantly lower HDL-CEC compared to both control and aortic sclerosis subjects (mean: 6.09%, 7.32% and 7.26%, respectively). HDL-CEC displayed negative correlations with peak aortic jet velocity and aortic valve calcium score, indexes of CAVS severity (ρ = -0.298, p = 0.002 and ρ = -0.358, p = 0.005, respectively). In multivariable regression model, HDL-CEC had independent association with aortic valve calcium score (B: -0.053, SE: 0.014, p < 0.001), GFR (B: -0.034, SE: 0.012, p = 0.007), as well as with levels of total cholesterol (B: 0.018, SE: 0.005, p = 0.002). Conclusion These results indicate an impairment of HDL-CEC in moderate-severe CAVS and may contribute to identify potential novel targets for CAVS management.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Corresponding author. Department of Cardiology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma, Italy
- Corresponding author.
| | - Kadri M. Gurses
- Department of Basic Medical Sciences, Adnan Menderes University Faculty of Medicine, Aydin, Turkey
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Institute of Oncology, Ankara, Turkey
| | - Mehmet F.T. Soyal
- Department of Cardiovascular Surgery, Medicana International Ankara Hospital, Ankara, Turkey
| | - Dicle Guc
- Department of Basic Oncology, Hacettepe University Institute of Oncology, Ankara, Turkey
| | - Tuncay Hazirolan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Necla Ozer
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Abstract
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|