1
|
Ikäläinen H, Guzman C, Saari M, Söderling E, Loimaranta V. Real-time acid production and extracellular matrix formation in mature biofilms of three Streptococcus mutans strains with special reference to xylitol. Biofilm 2024; 8:100219. [PMID: 39281714 PMCID: PMC11402442 DOI: 10.1016/j.bioflm.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Acidogenicity and production of an extracellular matrix (ECM) are important virulence factors for the dental caries-associated bacteria, such as Streptococcus mutans, that live in biofilms on tooth surface. The ECM protects the bacteria from the flushing and buffering effects of saliva resulting in highly acidic microenvironments inside the biofilm. Materials and methods In this in vitro study, we applied real-time assays to follow biofilm formation and pH decrease in a growth medium and saliva by three S. mutans strains, as well as acid neutralization inside the mature biofilm. Results were compared with the biofilm composition. Effects of a non-fermentable polyol, xylitol, on acid production and acid neutralization in mature biofilms were evaluated by real-time pH measurements and confocal microscopy. Results Combination of real-time pH measurements with biofilm accumulation assays revealed growth media dependent differences in the pH decrease and biofilm accumulation, as well as strain differences in acid production and biofilm formation but not in the buffer diffusion through ECM. The presence of xylitol reduced the pH drop during biofilm formation of all strains. In addition, with strain Ingbritt xylitol reduced the amount of ECM in biofilm, which increased the rate of acid neutralization inside the biofilm after buffer exposure. Conclusion Our results stress the importance of biofilm matrix in creating the acidic environment inside a S. mutans biofilm, especially in the presence of saliva. In addition, our results suggest a novel mechanism of xylitol action. The observed increase in the permeability of the S. mutans ECM after xylitol exposure may allow acid-neutralizing saliva to reach deeper layer of the biofilms and thus, in part, explain previous clinical observations of reduced plaque acidogenicity after frequent xylitol use.
Collapse
Affiliation(s)
- Henna Ikäläinen
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| | - Camilo Guzman
- Cell Imaging and Cytometry Core, Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- Euro-Bioimaging ERIC, Turku, Finland
| | - Markku Saari
- Cell Imaging and Cytometry Core, Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| | - Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
2
|
Dagli N, Haque M, Kumar S. Bibliometric Analysis of Clinical Trials on the Effect of Sugar Alcohol Consumption on Oral Health: Trends, Insights, and Future Directions (1967-2024). Cureus 2024; 16:e60248. [PMID: 38872648 PMCID: PMC11170056 DOI: 10.7759/cureus.60248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In recent years, the quest for healthier alternatives to sugar has led to the widespread use of sugar alcohol in various food and beverage products. Sugar alcohols, such as xylitol, sorbitol, and erythritol, are popular substitutes due to their sweet taste and lower calorie content than sucrose. Beyond their role in calorie reduction, sugar alcohols have garnered attention for their potential impact on oral health. The bibliometric analysis of clinical trials on sugar alcohol and oral health in PubMed reveals a dynamic and multifaceted research landscape shaped by various factors. Fluctuations in publication rates over time suggest influences such as shifts in research interests, technological advancements, regulatory changes, and evolving consumer behaviors. Key authors like Makinen KK, Makinen PL, and Soderling E emerge as prolific contributors with collaborative solid networks within the research community. The University of Turku in Finland has been identified as the highest contributing university, while Caries Research is the most contributing journal based on the number of clinical trials published. The country-wise analysis highlights Italy and the United States as substantial contributors, with diverse trajectories of research activity observed across nations. The subject-specific words with the highest cooccurrence are xylitol, dental caries, chewing gum, Streptococcus mutans, and saliva. Thematic analysis dives deep into how sugar alcohols relate to oral health, using different methods to study their effectiveness, safety, and how they affect the oral microbiome. The analysis of topic trends indicates ongoing exploration of sorbitol and xylitol, with an increasing emphasis on the potential advantages of xylitol. Additionally, there is notable attention on cariostatic agents, strategies for dental caries prevention, and the emergence of novel research domains like probiotics and erythritol, showcasing the dynamic evolution of oral health research focuses and developments. Overall, this analysis provides valuable insights into the distribution and trends of clinical trial publications, contributing to a nuanced understanding of the research landscape in sugar alcohol and oral health.
Collapse
Affiliation(s)
- Namrata Dagli
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
3
|
Pienihäkkinen K, Hietala-Lenkkeri A, Arpalahti I, Söderling E. The effect of xylitol chewing gums and candies on caries occurrence in children: a systematic review with special reference to caries level at study baseline. Eur Arch Paediatr Dent 2024; 25:145-160. [PMID: 38430364 PMCID: PMC11058973 DOI: 10.1007/s40368-024-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE A systematic review of published data was carried out to assess the caries-preventive effects of xylitol chewing gums and candies in children. METHODS Electronic and hand searches were performed to find clinical studies on the effects of xylitol chewing gums and candies on dental caries in children (≤ 18 years). Prospective randomised or controlled clinical trials published before 2023 were included in the review. RESULTS The initial search identified 365 titles to be evaluated. After applying inclusion and exclusion criteria, 15 articles with either fair or low quality were reviewed. Nine articles studied chewing gums, five candies, and one both of them. In the ten evaluated xylitol chewing gum studies xylitol consumption significantly reduced caries occurrence when compared with no treatment or a placebo polyol gum. The effect was clinically significant in studies with high or moderate caries level at study baseline. The results also suggested that the caries-reducing effect of xylitol gums may differ from sorbitol/polyol gums. In five of the six heterogenous xylitol candy studies, no caries-reducing effect was found independent of caries level. In addition to caries level, also the daily xylitol dose was a confounding factor. CONCLUSION The present findings suggest that the caries-reducing effect of adding xylitol chewing gum to the daily diet has been well demonstrated in children and adolescents with high or moderate caries level at study baseline. Xylitol gum use could benefit subjects with active incipient caries lesions on smooth tooth surfaces.
Collapse
Affiliation(s)
- K Pienihäkkinen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - A Hietala-Lenkkeri
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - I Arpalahti
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - E Söderling
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| |
Collapse
|
4
|
Luo SC, Wei SM, Luo XT, Yang QQ, Wong KH, Cheung PCK, Zhang BB. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ Biofilms Microbiomes 2024; 10:14. [PMID: 38402294 PMCID: PMC10894247 DOI: 10.1038/s41522-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.
Collapse
Affiliation(s)
- Si-Chen Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Si-Min Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Xin-Tao Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China.
| |
Collapse
|
5
|
Guo M, Yang K, Zhou Z, Chen Y, Zhou Z, Chen P, Huang R, Wang X. Inhibitory effects of Stevioside on Streptococcus mutans and Candida albicans dual-species biofilm. Front Microbiol 2023; 14:1128668. [PMID: 37089575 PMCID: PMC10113668 DOI: 10.3389/fmicb.2023.1128668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Streptococcus mutans is the most prevalent biofilm-forming pathogen in dental caries, while Candida albicans is often detected in the presence of S. mutans. Methods We aimed to evaluate the anti-caries effect of stevioside in medium trypticase soy broth (TSB) with or without sucrose supplementation compared with the same sweetness sucrose and xylitol in a dual-species model of S. mutans and C. albicans, based on planktonic growth, crystal violet assay, acid production, biofilm structural imaging, confocal laser scanning microscopy, and RNA sequencing. Results Our results showed that compared with sucrose, stevioside significantly inhibited planktonic growth and acid production, changed the structure of the mixed biofilm, and reduced the viability of biofilm and the production of extracellular polysaccharides in dual-species biofilm. Through RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway impact analysis showed that stevioside decreased sucrose metabolism and increased galactose and intracellular polysaccharide metabolism in S. mutans, and decreased genes related to GPI-modified proteins and secreted aspartyl proteinase (SAP) family in C. albicans. In contrast to xylitol, stevioside also inhibited the transformation of fungal morphology of C. albicans, which did not form mycelia and thus had reduced pathogenicity. Stevioside revealed a superior suppression of dual-species biofilm formation compared to sucrose and a similar anti-caries effect with xylitol. However, sucrose supplementation diminished the suppression of stevioside on S. mutans and C. albicans. Conclusions Our study is the first to confirm that stevioside has anticariogenic effects on S. mutans and C. albicans in a dual-species biofilm. As a substitute for sucrose, it may help reduce the risk of developing dental caries.
Collapse
Affiliation(s)
- Mingzhu Guo
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Kuan Yang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Chinese People’s Liberation Army, Lhasa, Tibet, China
| | - Yujiang Chen
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ziye Zhou
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Peng Chen
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ruizhe Huang
- Department of Oral Prevention, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ruizhe Huang,
| | - Xiaojing Wang
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Xiaojing Wang,
| |
Collapse
|
6
|
Söderling E, Pienihäkkinen K, Gursoy UK. Effects of sugar-free polyol chewing gums on gingival inflammation: a systematic review. Clin Oral Investig 2022; 26:6881-6891. [PMID: 36239787 PMCID: PMC9708815 DOI: 10.1007/s00784-022-04729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A systematic review of published data was conducted with the aim of assessing the effects of sugar-free polyol chewing gums on gingival inflammation. MATERIALS AND METHODS Electronic and hand searches were performed to find clinical studies concerning the effects of sugar-free chewing gums on gingival scores. Prospective randomized controlled clinical trials published between 1971 and 2021 were included in the review. RESULTS The initial search identified 46 erythritol, 102 xylitol, 23 sorbitol, and nine maltitol chewing gum articles. After applying inclusion and exclusion criteria, seven xylitol chewing gum studies, one sorbitol, and one maltitol chewing gum study with either high or fair quality were reviewed. In five out of the seven xylitol studies, xylitol gum decreased gingival scores. In two studies, xylitol decreased gingival scores compared to a polyol gum, and in three studies compared to no gum/gum base. As for sorbitol and maltitol, only sorbitol gum chewing showed a small decrease in gingival scores compared to the controls. CONCLUSIONS Habitual xylitol gum chewing may reduce gingival inflammation. The low number of studies and their heterogeneity provide clear indications that the effects of sugar-free polyol chewing gums on gingival inflammation need further, well-controlled studies. CLINICAL RELEVANCE Sugar-free chewing gums, especially xylitol gum, may function as adjuncts to toothbrushing for reducing gingival inflammation, but the evidence so far is inconclusive.
Collapse
Affiliation(s)
- Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Kaisu Pienihäkkinen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
7
|
Abduweli Uyghurturk D, Lu Y, Urata J, C. Dvorak C, Den Besten P. Dental caries as a risk factor for bacterial blood stream infection (BSI) in children undergoing hematopoietic cell transplantation (HCT). PeerJ 2022; 10:e14040. [PMID: 36172496 PMCID: PMC9511999 DOI: 10.7717/peerj.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Background Hematopoietic cell transplantation (HCT) is a potentially curative therapy for a wide range of pediatric malignant and nonmalignant diseases. However, complications, including blood stream infection (BSI) remain a major cause of morbidity and mortality. While certain bacteria that are abundant in the oral microbiome, such as S. mitis, can cause BSI, the role of the oral microbial community in the etiology of BSI is not well understood. The finding that the use of xylitol wipes, which specifically targets the cariogenic bacteria S. mutans is associated with reduced BSI in pediatric patients, lead us to investigate dental caries as a risk factor for BSI. Methods A total of 41 pediatric patients admitted for allogenic or autologous HCT, age 8 months to 25 years, were enrolled. Subjects with high dental caries risk were identified as those who had dental restorations completed within 2 months of admission for transplant, or who had untreated decay. Fisher's exact test was used to determine if there was a significant association between caries risk and BSI. Dental plaque and saliva were collected on a cotton swab from a subset of four high caries risk (HCR) and four low caries risk (LCR) children following pretransplant conditioning. 16SrRNA sequencing was used to compare the microbiome of HCR and LCR subjects and to identify microbes that were significantly different between the two groups. Results There was a statistically significant association between caries risk and BSI (p < 0.035) (Fisher's exact test). Multivariate logistic regression analysis showed children in the high dental caries risk group were 21 times more likely to have BSI, with no significant effect of age or mucositis severity. HCR subjects showed significantly reduced microbial alpha diversity as compared to LCR subjects. LEfse metagenomic analyses, showed the oral microbiome in HCR children enriched in order Lactobacillales. This order includes Streptococcus and Lactobacillus, both which contain bacteria primarily associated with dental caries. Discussion These findings support the possibility that the cariogenic microbiome can enhance the risk of BSI in pediatric populations. Future metagenomic analyses to measure microbial differences at, before, and after conditioning related to caries risk, may further unravel the complex relationship between the oral microbiome, and whether it affects health outcomes such as BSI.
Collapse
Affiliation(s)
- Dawud Abduweli Uyghurturk
- Orofacial Science, University of California, San Francisco, San Francisco, CA, United States
- Center for Children’s Oral Health Research, School of Dentistry, University of California, San Francisco, San Francisco, California, United States
| | - Ying Lu
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplant, University of California, San Francisco, San Francisco, California, United States
| | - Janelle Urata
- Orofacial Science, University of California, San Francisco, San Francisco, CA, United States
- Center for Children’s Oral Health Research, School of Dentistry, University of California, San Francisco, San Francisco, California, United States
| | - Christopher C. Dvorak
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplant, University of California, San Francisco, San Francisco, California, United States
| | - Pamela Den Besten
- Orofacial Science, University of California, San Francisco, San Francisco, CA, United States
- Center for Children’s Oral Health Research, School of Dentistry, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
8
|
Zheng F, Basit A, Zhuang H, Chen J, Zhang J, Chen W. Biochemical characterization of a novel acidophilic β-xylanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of beechwood xylan. Front Microbiol 2022; 13:998160. [PMID: 36199370 PMCID: PMC9527580 DOI: 10.3389/fmicb.2022.998160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Acidophilic β-xylanases have attracted considerable attention due to their excellent activity under extreme acidic environments and potential industrial utilizations. In this study, a novel β-xylanase gene (Xyl11) of glycoside hydrolase family 11, was cloned from Trichoderma asperellum ND-1 and efficiently expressed in Pichia pastoris (a 2.0-fold increase). Xyl11 displayed a maximum activity of 121.99 U/ml at pH 3.0 and 50°C, and exhibited strict substrate specificity toward beechwood xylan (Km = 9.06 mg/ml, Vmax = 608.65 μmol/min/mg). The Xyl11 retained over 80% activity at pH 2.0–5.0 after pretreatment at 4°C for 1 h. Analysis of the hydrolytic pattern revealed that Xyl11 could rapidly convert xylan to xylobiose via hydrolysis activity as well as transglycosylation. Moreover, the results of site-directed mutagenesis suggested that the Xyl11 residues, Glu127, Glu164, and Glu216, are essential catalytic sites, with Asp138 having an auxiliary function. Additionally, a high degree of synergy (15.02) was observed when Xyl11 was used in association with commercial β-xylosidase. This study provided a novel acidophilic β-xylanase that exhibits excellent characteristics and can, therefore, be considered a suitable candidate for extensive applications, especially in food and animal feed industries.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Fengzhen Zheng,
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Weiqing Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
9
|
Effect of chewing gum containing Xylitol and blackberry powder on oral bacteria: A randomized controlled crossover trial. Arch Oral Biol 2022; 143:105523. [PMID: 36037565 DOI: 10.1016/j.archoralbio.2022.105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim was to determine the effect of chewing gum containing xylitol and freeze-dried blackberry powder on oral bacteria. DESIGN This was a randomized, controlled, cross-over study (RCT #: NCT05133557). Fifty participants chewed gum over an 8 h period, four times for 20 min at 2-hour intervals, containing 700 mg xylitol (CG) with or without 50 mg blackberry powder (BG), while wearing a stent containing a sterile enamel chip. After a 1 week washout, participants chewed gum from the other group following the same protocol. The primary outcome was the amount of nine oral bacteria in saliva as determined by quantitative PCR. The secondary outcome was bacteria formed on enamel chips. RESULTS Chewing BG for four twenty-minute intervals reduced mean total bacteria load and the relative abundance of six of the nine bacteria studied in saliva (p < 0.05). In comparison, only four bacteria were reduced in abundance in the CG group. After gum chewing and regardless of group, S. sanguinis and A. naeslundii were the predominant bacteria adherent to enamel, with S. mutans representing < 1 % of the total bacteria on enamel. CONCLUSION Bacterial loads in saliva were rapidly, differentially, and significantly reduced after one day of chewing BG.
Collapse
|
10
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
11
|
Bombin A, Yan S, Bombin S, Mosley JD, Ferguson JF. Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa. Physiol Rep 2022; 10:e15254. [PMID: 35384379 PMCID: PMC8980904 DOI: 10.14814/phy2.15254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 04/23/2023] Open
Abstract
Obesity is an increasing global health concern and is associated with a broad range of morbidities. The gut microbiota are increasingly recognized as important contributors to obesity and cardiometabolic health. This study aimed to characterize oral and gut microbial communities, and evaluate host: microbiota interactions between clinical obesity classifications. We performed 16S rRNA sequencing on fecal and salivary samples, global metabolomics profiling on plasma and stool samples, and dietary profiling in 135 healthy individuals. We grouped individuals by obesity status, based on body mass index (BMI), including lean (BMI 18-124.9), overweight (BMI 25-29.9), or obese (BMI ≥30). We analyzed differences in microbiome composition, community inter-relationships, and predicted microbial function by obesity status. We found that salivary bacterial communities of lean and obese individuals were compositionally and phylogenetically distinct. An increase in obesity status was positively associated with strong correlations between bacterial taxa, particularly with bacterial groups implicated in metabolic disorders including Fretibacterium, and Tannerella. Consumption of sweeteners, especially xylitol, significantly influenced compositional and phylogenetic diversities of salivary and fecal bacterial communities. In addition, obesity groups exhibited differences in predicted bacterial metabolic activity, which was correlated with host's metabolite concentrations. Overall, obesity was associated with distinct changes in bacterial community dynamics, particularly in saliva. Consideration of microbiome community structure and inclusion of salivary samples may improve our ability to understand pathways linking microbiota to obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Andrei Bombin
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shun Yan
- Department of GeneticsThe University of AlabamaBirminghamAlabamaUSA
| | - Sergei Bombin
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - Jonathan D. Mosley
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Microbiome Innovation Center (VMIC)NashvilleTennesseeUSA
| |
Collapse
|
12
|
Söderling E, Pienihäkkinen K. Effects of xylitol chewing gum and candies on the accumulation of dental plaque: a systematic review. Clin Oral Investig 2022; 26:119-129. [PMID: 34677696 PMCID: PMC8791908 DOI: 10.1007/s00784-021-04225-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES A systematic review of published data was conducted with the aim of assessing the effects of xylitol consumption on the amount of dental plaque. MATERIALS AND METHODS Electronic and hand searches were performed to find clinical studies concerning the effects of xylitol chewing gum or candies on dental plaque. Prospective randomized controlled clinical trials published between 1971 and 2020 conducted in healthy subjects were included in the review. RESULTS The initial search identified 424 xylitol articles. After applying inclusion and exclusion criteria, altogether 14 articles (16 studies) were reviewed. The review identified 12 of the total of 14 xylitol chewing gum studies as having fair or high quality. In 13 of the 14 chewing gum studies, xylitol gum decreased plaque accumulation. In six studies, xylitol gum chewing decreased plaque compared to sorbitol gum, and in three studies compared to gum base/no gum. In three fair-quality studies conducted with xylitol candies, plaque accumulation did not change. CONCLUSIONS Habitual xylitol gum chewing appears to show plaque-reducing effects that differ from those of sorbitol gum. This suggests specific effects for xylitol on plaque accumulation. Xylitol candies appear not to decrease plaque. The heterogeneity of the studies warrants further research. Clinical relevance Habitual xylitol gum chewing is likely to decrease plaque.
Collapse
Affiliation(s)
- Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Kaisu Pienihäkkinen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
13
|
Elmokanen M, Ezzat M, Ibrahim A, Shaalan O. Effect of dissolving xylitol chewable tablets versus xylitol chewing gum on bacterial count and salivary pH in geriatric bedridden patients: A randomized clinical trial. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_205_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Cagna DR, Donovan TE, McKee JR, Eichmiller F, Metz JE, Albouy JP, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2021; 126:276-359. [PMID: 34489050 DOI: 10.1016/j.prosdent.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2020 professional literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to this work to cover this broad topic. Specific subject areas addressed include prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders (TMDs); sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence day-to-day dental treatment decisions with a keen eye on future trends in the profession. With the tremendous volume of dentistry and related literature being published today, this review cannot possibly be comprehensive. The purpose is to update interested readers and provide important resource material for those interested in pursuing greater detail. It remains our intent to assist colleagues in navigating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the dental patients they encounter.
Collapse
Affiliation(s)
- David R Cagna
- Professor, Associate Dean, Chair and Residency Director, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Frederick Eichmiller
- Vice President and Science Officer, Delta Dental of Wisconsin, Stevens Point, Wis
| | | | - Jean-Pierre Albouy
- Assistant Professor of Prosthodontics, Department of Restorative Sciences, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, Md; Private practice, Baltimore, Md
| | - Matthias Troeltzsch
- Associate Professor, Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University of Munich, Munich, Germany; Private practice, Ansbach, Germany
| |
Collapse
|
15
|
Li Q, Jiang Y, Tong X, Zhao L, Pei J. Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis. Front Bioeng Biotechnol 2021; 8:637397. [PMID: 33598452 PMCID: PMC7882696 DOI: 10.3389/fbioe.2020.637397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
As is well-known, endo-1,4-β-xylanase and β-xylosidase are the rate-limiting enzymes in the degradation of xylan (the major hemicellulosic component), main functions of which are cleavaging xylan to release xylooligosaccharides (XOS) and xylose that these two compounds have important application value in fuel, food, and other industries. This study focuses on enzymatic hydrolysis of poplar sawdust xylan for production of XOS and xylose by a GH11 endo-1,4-β-xylanase MxynB-8 and a GH39 β-xylosidase Xln-DT. MxynB-8 showed excellent ability to hydrolyze hemicellulose of broadleaf plants, such as poplar. Under optimized conditions (50°C, pH 6.0, dosage of 500 U/g, substrate concentration of 2 mg/mL), the final XOS yield was 85.5%, and the content of XOS2-3 reached 93.9% after 18 h. The enzymatic efficiency by MxynB-8 based on the poplar sawdust xylan in the raw material was 30.5%. Xln-DT showed excellent xylose/glucose/arabinose tolerance, which is applied as a candidate to apply in degradation of hemicellulose. In addition, the process and enzymatic mode of poplar sawdust xylan with MxynB-8 and Xln-DT were investigated. The results showed that the enzymatic hydrolysis yield of poplar sawdust xylan was improved by adding Xln-DT, and a xylose-rich hydrolysate could be obtained at high purity, with the xylose yield of 89.9%. The enzymatic hydrolysis yield was higher (32.2%) by using MxynB-8 and Xln-DT together. This study provides a deep understanding of double-enzyme synergetic enzymolysis of wood polysaccharides to valuable products.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunpeng Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|