1
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Wu MJM, Sermer C, Kandel RA, Theodoropoulos JS. Characterization of Migratory Cells From Bioengineered Bovine Cartilage in a 3D Co-culture Model. Am J Sports Med 2022; 50:3090-3101. [PMID: 35983988 PMCID: PMC9442774 DOI: 10.1177/03635465221113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/03/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chondrocyte migration in native cartilage is limited and has been implicated as one of the reasons for the poor integration of native implants. Through use of an in vitro integration model, it has previously been shown that cells from bioengineered cartilage can migrate into the native host cartilage during integration. Platelet-rich plasma (PRP) treatment further enhanced integration of bioengineered cartilage to native cartilage in vitro. However, it is not known how PRP treatment of the bioengineered construct promotes this. HYPOTHESIS PRP supports cell migration from bioengineered cartilage and these migratory cells have the ability to accumulate cartilage-like matrix. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral-like constructs were generated by culturing primary bovine chondrocytes on the top surface of a porous bone substitute biomaterial composed of calcium polyphosphate. After 1 week in culture, the constructs were submerged in PRP and placed adjacent, but 2 mm distant, to a native bovine osteochondral plug in a co-culture model for 2 weeks. Cell migration was monitored using phase-contrast imaging. Cell phenotype was determined by evaluating the gene expression of matrix metalloprotease 13 (MMP-13), Ki67, and cartilage matrix molecules using quantitative polymerase chain reaction. When tissue formed, it was assessed by histology, immunohistochemistry, and quantification of matrix content. RESULTS PRP treatment resulted in the formation of a fiber network connecting the bioengineered cartilage and native osteochondral plug. Cells from both the bioengineered cartilage and the native osteochondral tissue migrated onto the PRP fibers and formed a tissue bridge after 2 weeks of culture. Migratory cells on the tissue bridge expressed higher levels of collagen types II and I (COL2, COL1), Ki67 and MMP-13 mRNA compared with nonmigratory cells in the bioengineered cartilage. Ki67 and MMP-13-positive cells were found on the edges of the tissue bridge. The tissue bridge accumulated COL1 and COL2 and aggrecan and contained comparable collagen and glycosaminoglycan content to the bioengineered cartilage matrix. The tissue bridge did not reliably develop in the absence of cells from the native osteochondral plug. CONCLUSION Bioengineered cartilage formed by bovine chondrocytes contains cells that can migrate on PRP fibers and form cartilaginous tissue. CLINICAL RELEVANCE Migratory cells from bioengineered cartilage may promote cartilage integration. Further studies are required to determine the role of migratory cells in integration in vivo.
Collapse
Affiliation(s)
- Ming Jia Michael Wu
- Lunenfeld-Tanenbaum Research Institute,
Toronto, Ontario, Canada
- Institute of Biomaterials and
Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Corey Sermer
- Lunenfeld-Tanenbaum Research Institute,
Toronto, Ontario, Canada
- Institute of Biomaterials and
Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Lunenfeld-Tanenbaum Research Institute,
Toronto, Ontario, Canada
- Institute of Biomaterials and
Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine,
Mount Sinai Hospital, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, Ontario, Canada
| | - John S. Theodoropoulos
- Division of Orthopaedic Surgery, Mount
Sinai Hospital, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery,
University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Danalache M, Beutler KR, Rolauffs B, Wolfgart JM, Bonnaire FC, Fischer S, Greving I, Hofmann UK. Exploration of changes in spatial chondrocyte organisation in human osteoarthritic cartilage by means of 3D imaging. Sci Rep 2021; 11:9783. [PMID: 33963289 PMCID: PMC8105369 DOI: 10.1038/s41598-021-89582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Using two-dimensional top-down view microscopy, researchers have recently described chondrocytes as being spatially arranged in distinct patterns such as strings, double strings, and small and large clusters. Because of the seeming association of these changes with tissue degeneration, they have been proposed as an image-based biomarker for early osteoarthritis (OA) staging. The aim of our study was to investigate the spatial arrangement of chondrocytes in human articular cartilage in a 3D fashion and to evaluate the 3D changes of these patterns in the context of local tissue destruction. Decalcified femoral condyle resections from the load-bearing area were analysed in 3D for their spatial chondrocyte organisation by means of fluorescence microscopy and synchrotron-radiation micro-computed tomography (SR-µCT). In intact cartilage chondrocyte strings can be found in the superficial, transitional and deep zones. The proposed pattern changes accompanying tissue destruction could be located not just along the surface but also through all layers of cartilage. Each spatial pattern was characterised by a different cellular density (the only exception being between single and double strings with p = 0.062), with cellular density significantly increasing alongside the increase in local tissue degeneration as defined by the chondrocyte patterns. We can thus corroborate that the proposed cellular spatial changes are a three-dimensional function of local tissue degeneration, underlining their relevance as an image-based biomarker for the early diagnosis and description of OA. Clinical trial registration number: Project number of the ethics committee of the University of Tübingen:171/2014BO2.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - Kevin Ralf Beutler
- Medical Faculty of the University of Tübingen, 72076, Tübingen, Germany. .,Department of Orthopaedic Surgery and Traumatology, Spital Thurgau AG, Spitalcampus 1, 8596, Münsterlingen, Switzerland.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108, Freiburg, Germany
| | | | - Florian Christof Bonnaire
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | - Stefan Fischer
- Department of Evolutionary Biology of Invertebrates, University of Tübingen, 72076, Tübingen, Germany.,Tübingen Structural Microscopy (TSM), Center for Applied Geoscience (ZAG), University of Tübingen, 72076, Tübingen, Germany
| | - Imke Greving
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Ulf Krister Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Hyaluronic Acid Supplement as a Chondrogenic Adjuvant in Promoting the Therapeutic Efficacy of Stem Cell Therapy in Cartilage Healing. Pharmaceutics 2021; 13:pharmaceutics13030432. [PMID: 33806959 PMCID: PMC8004652 DOI: 10.3390/pharmaceutics13030432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023] Open
Abstract
The main aim of this study is to investigate the therapeutic efficacy of direct intra-articular injection of bone-marrow-derived stem/stromal cells (BMSCs) and the adjuvant role of hyaluronic acid (HA) in facilitating rabbit articular cartilage repair. First, rabbit BMSCs were treated with a medium containing different concentrations of HA. Later, HA’s influence on BMSCs’ CD44 expression, cell viability, extracellular glycosaminoglycan (GAG) synthesis, and chondrogenic gene expression was evaluated during seven-day cultivation. For the in vivo experiment, 24 rabbits were used for animal experiments and 6 rabbits were randomly allocated to each group. Briefly, chondral defects were created at the medial femoral condyle; group 1 was left untreated, group 2 was injected with HA, group 3 was transplanted with 3 × 106 BMSCs, and group 4 was transplanted with 3 × 106 BMSCs suspended in HA. Twelve weeks post-treatment, the repair outcome in each group was assessed and compared both macroscopically and microscopically. Results showed that HA treatment can promote cellular CD44 expression. However, the proliferation rate of BMSCs was downregulated when treated with 1 mg/mL (3.26 ± 0.03, p = 0.0002) and 2 mg/mL (2.61 ± 0.04, p = 0.0001) of HA compared to the control group (3.49 ± 0.05). In contrast, 2 mg/mL (2.86 ± 0.3) of HA treatment successfully promoted normalized GAG expression compared to the control group (1.88 ± 0.06) (p = 0.0009). The type II collagen gene expression of cultured BMSCs was significantly higher in BMSCs treated with 2 mg/mL of HA (p = 0.0077). In the in vivo experiment, chondral defects treated with combined BMSC and HA injection demonstrated better healing outcomes than BMSC or HA treatment alone in terms of gross grading and histological scores. In conclusion, this study helps delineate the role of HA as a chondrogenic adjuvant in augmenting the effectiveness of stem-cell-based injection therapy for in vivo cartilage repair. From a translational perspective, the combination of HA and BMSCs is a convenient, ready-to-use, and effective formulation that can improve the therapeutic efficacy of stem-cell-based therapies.
Collapse
|
5
|
Zhang X, He J, Wang W. Progress in the use of mesenchymal stromal cells for osteoarthritis treatment. Cytotherapy 2021; 23:459-470. [PMID: 33736933 DOI: 10.1016/j.jcyt.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/20/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
LITERATURE REVIEW OF MSCS IN THE TREATMENT OF OSTEOARTHRITIS IN THE PAST FIVE YEARS: Osteoarthritis (OA) is one of the most common chronic joint diseases, with prominent symptoms caused by many factors. However, current medical interventions for OA have resulted in poor clinical outcomes, demonstrating that there are huge unmet medical needs in this area. Cell therapy has opened new avenues of OA treatment. Different sources of mesenchymal stromal cells (MSCs) may have different phenotypes and cellular functions. Pre-clinical and clinical studies have demonstrated the feasibility, safety and efficacy of MSC therapy. Mitogen-activated protein kinase, Wnt and Notch signaling pathways are involved in the chondrogenesis of MSC-mediated treatments. MSCs may also exert effective immunoregulatory and paracrine effects to stimulate tissue repair. Therapy with extracellular vesicles containing cytokines, which are secreted by MSCs, might be a potential treatment for OA.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiyin He
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen Wang
- Clinical Development, IASO Biotherapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
6
|
Oh J, Son YS, Kim WH, Kwon OK, Kang BJ. Mesenchymal stem cells genetically engineered to express platelet-derived growth factor and heme oxygenase-1 ameliorate osteoarthritis in a canine model. J Orthop Surg Res 2021; 16:43. [PMID: 33430899 PMCID: PMC7802278 DOI: 10.1186/s13018-020-02178-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/25/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are used for the treatment of osteoarthritis (OA), and MSC genetic engineering is expected to enhance cartilage repair. Here, we aimed to investigate the effect of MSCs overexpressing platelet-derived growth factor (PDGF) or heme oxygenase-1 (HO-1) in chondrocytes and synovial cells with an OA phenotype and assess the in vivo efficacy of intra-articular injections of these MSCs in canine OA models. METHODS Canine adipose-derived MSCs were transfected with canine PDGF (PDGF-MSCs) or HO-1 (HO-1-MSCs) using lentiviral vectors. Canine chondrocytes or synovial cells were stimulated with lipopolysaccharide (LPS) to mimic the inflammatory OA model and then co-cultured with MSCs, PDGF-MSCs, or HO-1-MSCs for 24 h and 72 h. The mRNA levels of pro-inflammatory, extracellular matrix-degradative/synthetic, or pain-related factors were measured after co-culture by real-time PCR. Furthermore, a surgery-induced canine OA model was established and the dogs were randomized into four groups: normal saline (n = 4), MSCs (n = 4), PDGF-MSCs (n = 4), and HO-1-MSCs (n = 4). The OA symptoms, radiographic OA severity, and serum matrix metallopeptidase (MMP)-13 levels were assessed before and 10 weeks after treatment, to evaluate the safety and efficacy of the modified MSCs. RESULTS PDGF or HO-1 overexpression significantly reduced the expression of pro-inflammatory factors, MMP-13, and nerve growth factor elicited by LPS and increased that of aggrecan and collagen type 2 in chondrocytes (P < 0.05). In addition, the expression of aggrecanases was significantly downregulated in synovial cells, whereas that of tissue inhibitor of metalloproteinases was upregulated (P < 0.05). Furthermore, the co-cultured MSCs highly expressed genes that contributed to the maintenance of joint homeostasis (P < 0.05). In vivo studies showed that OA symptoms improved after administration of all MSCs. Also, PDGF-MSCs significantly improved limb function and reduced pain (P < 0.05). The results of the radiographic assessment and serum MMP-13 levels did not vary significantly compared to those of the control. CONCLUSIONS Genetically modifying PDGF and HO-1 in MSCs is an effective strategy for treating OA, suggesting that PDGF-MSCs can be novel therapeutic agents for improving OA symptoms.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeon Sung Son
- Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Oh-Kyeong Kwon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea. .,BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Köhnke R, Ahlers MO, Birkelbach MA, Ewald F, Krueger M, Fiedler I, Busse B, Heiland M, Vollkommer T, Gosau M, Smeets R, Rutkowski R. Temporomandibular Joint Osteoarthritis: Regenerative Treatment by a Stem Cell Containing Advanced Therapy Medicinal Product (ATMP)-An In Vivo Animal Trial. Int J Mol Sci 2021; 22:E443. [PMID: 33466246 PMCID: PMC7795212 DOI: 10.3390/ijms22010443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a chronic degenerative disease that is often characterized by progressive impairment of the temporomandibular functional unit. The aim of this randomized controlled animal trial was a comparative analysis regarding the chondroregenerative potency of intra-articular stem/stromal cell therapy. Four weeks after combined mechanical and biochemical osteoarthritis induction in 28 rabbits, therapy was initiated by a single intra-articular injection, randomized into the following groups: Group 1: AB Serum (ABS); Group 2: Hyaluronic acid (HA); Group 3: Mesenchymal stromal cells (STx.); Group 4: Mesenchymal stromal cells in hyaluronic acid (HA + STx.). After another 4 weeks, the animals were euthanized, followed by histological examination of the removed joints. The histological analysis showed a significant increase in cartilage thickness in the stromal cell treated groups (HA + STx. vs. ABS, p = 0.028; HA + ST.x vs. HA, p = 0.042; STx. vs. ABS, p = 0.036). Scanning electron microscopy detected a similar heterogeneity of mineralization and tissue porosity in the subchondral zone in all groups. The single intra-articular injection of a stem cell containing, GMP-compliant advanced therapy medicinal product for the treatment of iatrogen induced osteoarthritis of the temporomandibular joint shows a chondroregenerative effect.
Collapse
Affiliation(s)
- Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Marcus Oliver Ahlers
- Department of Prosthetic Dentistry School of Dental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- CMD-Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Moritz Alexander Birkelbach
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany;
| | | | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Max Heiland
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 14197 Berlin, Germany;
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| |
Collapse
|
8
|
Wongin S, Narkbunnam R, Waikakul S, Chotiyarnwong P, Aresanasuwan T, Roytrakul S, Viravaidya-Pasuwat K. Construction and Evaluation of Osteochondral-Like Tissue Using Chondrocyte Sheet and Cancellous Bone. Tissue Eng Part A 2020; 27:282-295. [PMID: 32718279 DOI: 10.1089/ten.tea.2020.0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The manipulation of human chondrocyte sheets in target areas frequently results in their tearing because they are thin and fragile. In this study, human cancellous bones were used as a supporting material to create chondrocyte sheet-cancellous bone tissues, and their properties were evaluated. Using cell sheet technology, human chondrocytes were constructed into triple-layered chondrocyte sheets that displayed chondrogenic properties. After transferring the chondrocyte sheets onto cancellous bones, the top area of the chondrocyte sheet-cancellous bone tissues exhibited a smooth surface topography without cell sheet floating within 7 days of culture. The immunofluorescence staining of collagen type II (COL2A1) and fibronectin (FN1) was also performed and examined. Using the shotgun proteomic analysis, the proteins associated with cell adhesion, extracellular matrix (ECM) organization, cell-substrate junction assembly, and cell adhesion mediated by integrin were observed in the chondrocyte sheets, cancellous bones, and chondrocyte sheet-cancellous bone tissues. Three integrin members, including integrin β4 (ITGB4), ITGB6, and ITGB8, were found in the chondrocyte sheets. Only ITGB8 was found in the chondrocyte sheets and chondrocyte sheet-cancellous bone tissues. During 48 h, the mean velocity of the individual cell migration was low, which did not affect the structure and chondrogenic properties of the chondrocyte sheets. Staining of the filamentous actin (F-actin) cytoskeleton in the migratory cells also provided a better understanding of the dynamic communication between the cell cytoskeleton and adhesion molecules through ITGB8, which may play a key role in the attachment of the chondrocyte sheets and the synthesis of the cartilage ECM. Therefore, we suggest that cancellous bone could be used as a supporting material to construct chondrocyte sheet-cancellous bone tissues for potential treatment of osteochondral lesions. Impact Statement We proposed a method to construct an osteochondral-like tissue by placing human chondrocyte sheets onto cancellous bone. The stationary chondrocyte sheets and the low mean velocity of the individual cell migration on the cancellous bone with the expression of COL2A1 indicated that the cancellous bone served as an appropriate supporting material. Moreover, the cellular mechanism for the adhesion of the chondrocyte sheets on the cancellous bone based on ITGB8-mediated adhesion through the rearrangement of filamentous actin provided a better understanding to improve the construction of osteochondral-like tissues, and to predict the repair mechanism in osteoarthritis therapy.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Rapeepat Narkbunnam
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyawan Aresanasuwan
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
9
|
Szustak M, Gendaszewska-Darmach E. Extracellular Nucleotides Selectively Induce Migration of Chondrocytes and Expression of Type II Collagen. Int J Mol Sci 2020; 21:ijms21155227. [PMID: 32718031 PMCID: PMC7432683 DOI: 10.3390/ijms21155227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
The migration of chondrocytes from healthy to injured tissues is one of the most important challenges during cartilage repair. Additionally, maintenance of the chondrogenic phenotype remains another limitation, especially during monolayer culture in vitro. Using both the differentiated and undifferentiated chondrogenic ATDC5 cell line, we showed that extracellular nucleotides are able to increase the migration rate of chondrocytes without affecting their chondrogenic phenotype. We checked the potency of natural nucleotides (ATP, ADP, UTP, and UDP) as well as their stable phosphorothioate analogs, containing a sulfur atom in the place of one nonbridging oxygen atom in a phosphate group. We also detected P2y1, P2y2, P2y4, P2y6, P2y12, P2y13, and P2y14 mRNA transcripts for nucleotide receptors, demonstrating that P2y1 and P2y13 are highly upregulated in differentiated ATDC5 cells. We showed that ADPβS, UDPβS, and ADP are the best stimulators of migration of differentiated chondrocytes. Additionally, ADP and ADPβS positively affected the expression of type II collagen, a structural component of the cartilage matrix.
Collapse
|
10
|
Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018. [PMID: 30366400 DOI: 10.3390/ijms19113322.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
|
11
|
Roffi A, Nakamura N, Sanchez M, Cucchiarini M, Filardo G. Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. Int J Mol Sci 2018; 19:ijms19113322. [PMID: 30366400 PMCID: PMC6274908 DOI: 10.3390/ijms19113322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Stem cell-based therapy is a promising approach to treat cartilage lesions and clinical benefits have been reported in a number of studies. However, the efficacy of cell injection procedures may be impaired by cell manipulation and damage as well as by cell dissemination to non-target tissues. To overcome such issues, mesenchymal stromal cell (MSC) delivery may be performed using injectable vehicles as containment systems that further provide a favorable cell microenvironment. The aim of this systematic review was to analyze the preclinical and clinical literature on platelet-rich plasma (PRP), hyaluronic acid (HA), and hydrogels for the delivery of MSCs. The systematic literature search was performed using the PubMed and Web of science databases with the following string: "(stem cells injection) AND (platelet rich plasma OR PRP OR platelet concentrate OR biomaterials OR hyaluronic acid OR hydrogels)": 40 studies (19 preclinical and 21 clinical) met the inclusion criteria. This review revealed an increasing interest on the use of injectable agents for MSC delivery. However, while negligible adverse events and promising clinical outcomes were generally reported, the prevalence of low quality studies hinders the possibility to demonstrate the real benefits of using such injectable systems. Specific studies must be designed to clearly demonstrate the added benefits of these systems to deliver MSCs for the treatment of cartilage lesions and osteoarthritis.
Collapse
Affiliation(s)
- Alice Roffi
- Laboratory of Nano-Biotechnology-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 590-0496, Japan.
| | - Mikel Sanchez
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, 01008 Vitoria-Gasteiz, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center-IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
12
|
Esenyel CZ, Tekin C, Çakar M, Bayraktar K, Saygili S, Esenyel M, Tekin ZN. Surgical treatment of the neglected achilles tendon rupture with Hyalonect. J Am Podiatr Med Assoc 2016; 104:434-43. [PMID: 25275730 DOI: 10.7547/0003-0538-104.5.434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The purpose of this study was to report the management and outcomes of ten patients with chronic Achilles tendon rupture treated with a turndown gastrocnemius-soleus fascial flap wrapped with a surgical mesh (Hyalonect). METHODS Ten men with neglected Achilles tendon rupture were treated with a centrally based turndown gastrocnemius fascial flap wrapped with Hyalonect. Hyalonect is a knitted mesh composed of HYAFF, a benzyl ester of hyaluronic acid. The Achilles tendon ruptures were diagnosed more than 1 month after injury. The mean patient age was 41 years. All of the patients had weakness of active plantarflexion. The mean preoperative American Orthopaedic Foot and Ankle Society score was 64.8. RESULTS The functional outcome was excellent. The mean American Orthopaedic Foot and Ankle Society score was 97.8 at the latest follow-up. There were significant differences between the preoperative and postoperative scores. Ankle range of motion was similar in both ankles. Neither rerupture nor major complication, particularly of wound healing, was observed. CONCLUSIONS For patients with chronic Achilles tendon rupture with a rupture gap of at least 5 cm, surgical repair using a single turndown fascial flap covered with Hyalonect achieved excellent outcomes.
Collapse
Affiliation(s)
- Cem Zeki Esenyel
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Cagri Tekin
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Murat Çakar
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Kursat Bayraktar
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Selcuk Saygili
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Meltem Esenyel
- Department of Physical Therapy and Rehabilitation, Medeniyet University, Göztepe Training and Research Hospital, İstanbul, Turkey
| | - Zeynep N. Tekin
- Department of Radiology, Darica Farabi Government Hospital, Kocaeli, Turkey
| |
Collapse
|
13
|
Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review. BMC Musculoskelet Disord 2016; 17:230. [PMID: 27229856 PMCID: PMC4880954 DOI: 10.1186/s12891-016-1085-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.
Collapse
Affiliation(s)
- Julien Freitag
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia.
| | - Dan Bates
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia
| | | | - Kiran Shah
- Magellan Stem Cells, Melbourne, Australia
| | | | - Leesa Huguenin
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia
| | - Abi Tenen
- Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Petchdee S, Suphamungm W, Bootcha R. Therapeutic Benefit of Intra-articular Administration of Deciduous Teeth Stem Cells in Rabbit Model of Osteoarthritis. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajava.2016.363.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits. PLoS One 2016; 11:e0149835. [PMID: 26915044 PMCID: PMC4767225 DOI: 10.1371/journal.pone.0149835] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo.
Collapse
Affiliation(s)
- En-Rung Chiang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsiao-Li Ma
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jung-Pan Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chien-Lin Liu
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Tain-Hsiung Chen
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
- Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Integrative Stem Cell Center & Department of Orthopedics, China Medical University Hospital, Taichung 404, Taiwan
- Institute of Clinical Medicine, China Medical University, Taichung 404, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Abstract
Hyaluronan (HA) is a component that is particularly abundant in the synovial fluid. Randomized, double-blinded, placebo-controlled trials carried out between 2008 and 2015 have proven the effectiveness of HA for the treatment of symptoms associated with synovitis, and particularly, knee pain, relief of synovial effusion or inflammation, and improvement of muscular knee strength. The mechanism by which HA exerts its effects in the living body, specifically receptor binding in the intestinal epithelia, has gradually been clarified. This review examines the effects of HA upon knee pain as assessed in clinical trials, as well as the mechanism of these effects and the safety of HA.
Collapse
|
17
|
Effect of the direct injection of bone marrow mesenchymal stem cells in hyaluronic acid and bone marrow stimulation to treat chondral defects in the canine model. Regen Ther 2015; 2:42-48. [PMID: 31245458 PMCID: PMC6581783 DOI: 10.1016/j.reth.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/19/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023] Open
Abstract
Introduction The purpose of this study was to assess the direct injection of bone marrow-derived mesenchymal stem cells (BMSCs) suspended in hyaluronic acid (HA) combined with drilling as a treatment for chondral defects in a canine model. Methods Tibial bone marrow was aspirated, and BMSCs were isolated and cultured. One 8.0-mm diameter chondral defect was created in the femoral groove, and nine 0.9-mm diameter holes were drilled into the defect. BMSCs (2.14 × 107 cells) suspended in HA were injected into the defect. HA alone was injected into a similar defect on the contralateral knee as a control. Animals were sacrificed at 3 and 6 months. Results Although the percentage of coverage assessed macroscopically was significantly better at 6 months than at 3 months in both the BMSC (p = 0.02) and control (p = 0.001) groups, there were no significant differences in the International Cartilage Repair Society grades. The Wakitani histological score was significantly better at 6 months than at 3 months in the BMSC and control groups. While the control defects were mostly filled with fibrocartilage, several of the defects in the BMSC group contained hyaline-like cartilage. The mean Wakitani scores of the BMSC group improved from 7.0 ± 1.0 at 3 months to 4.6 ± 0.9 at 6 months, and those of the control group improved from 9.4 ± 1.2 to 6.0 ± 0.6. The BMSC group showed significantly better regeneration than the control group at 3 months (p = 0.04), but the difference at 6 months was not significant (p = 0.06). Conclusions The direct injection of BMSCs in HA combined with drilling enhanced cartilage regeneration.
Collapse
|
18
|
Hopper N, Henson F, Brooks R, Ali E, Rushton N, Wardale J. Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration. Arthritis Res Ther 2015; 17:199. [PMID: 26249339 PMCID: PMC4528856 DOI: 10.1186/s13075-015-0709-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction A major problem in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into defects. Cartilage is essentially avascular and therefore its healing is not considered to involve mononuclear cells. Peripheral blood derived mononuclear cells (PBMC) offer a readily available autologous cell source for clinical use and therefore this study was designed to evaluate the effects of PBMCs on chondrocytes and cartilage. Methods Human primary chondrocytes and cartilage tissue explants were taken from patients undergoing total knee replacement (n = 17). Peripheral blood samples were obtained from healthy volunteers (n = 12) and mononuclear cells were isolated by density-gradient centrifugation. Cell migration and chemokinetic potential were measured using a scratch assay, xCELLigence and CyQuant assay. PCR array and quantitative PCR was used to evaluate mRNA expression of 87 cell motility and/or chondrogenic genes. Results The chondrocyte migration rate was 2.6 times higher at 3 hour time point (p < 0.0001) and total number of migrating chondrocytes was 9.7 times higher (p < 0.0001) after three day indirect PBMC stimulus and 8.2 times higher (p < 0.0001) after three day direct co-culture with PBMCs. A cartilage explant model confirmed that PBMCs also exert a chemokinetic role on ex vivo tissue. PBMC stimulation was found to significantly upregulate the mRNA levels of 2 chondrogenic genes; collagen type II (COL2A1 600–fold, p < 0.0001) and SRY box 9 (SOX9 30–fold, p < 0.0001) and the mRNA levels of 7 genes central in cell motility and migration were differentially regulated by 24h PBMC stimulation. Conclusion The results support the concept that PBMC treatment enhances chondrocyte migration without suppressing the chondrogenic phenotype possibly via mechanistic pathways involving MMP9 and IGF1. In the future, peripheral blood mononuclear cells could be used as an autologous point-ofcare treatment to attract native chondrocytes from the diseased tissue to aid in cartilage repair.
Collapse
Affiliation(s)
- Niina Hopper
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK.
| | - Roger Brooks
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Erden Ali
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Neil Rushton
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - John Wardale
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| |
Collapse
|
19
|
Tan AR, Alegre-Aguarón E, O’Connell GD, VandenBerg CD, Aaron RK, Vunjak-Novakovic G, Bulinski JC, Ateshian GA, Hung CT. Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis Cartilage 2015; 23:319-27. [PMID: 25452155 PMCID: PMC4369922 DOI: 10.1016/j.joca.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Galvanotaxis, the migratory response of cells in response to electrical stimulation, has been implicated in development and wound healing. The use of mesenchymal stem cells (MSCs) from the synovium (synovium-derived stem cells, SDSCs) has been investigated for repair strategies. Expansion of SDSCs is necessary to achieve clinically relevant cell numbers; however, the effects of culture passage on their subsequent cartilaginous extracellular matrix production are not well understood. METHODS Over four passages of SDSCs, we measured the expression of cell surface markers (CD31, CD34, CD49c, CD73) and assessed their migratory potential in response to applied direct current (DC) electric field. Cells from each passage were also used to form micropellets to assess the degree of cartilage-like tissue formation. RESULTS Expression of CD31, CD34, and CD49c remained constant throughout cell expansion; CD73 showed a transient increase through the first two passages. Correspondingly, we observed that early passage SDSCs exhibit anodal migration when subjected to applied DC electric field strength of 6 V/cm. By passage 3, CD73 expression significantly decreased; these cells exhibited cell migration toward the cathode, as previously observed for terminally differentiated chondrocytes. Only late passage cells (P4) were capable of developing cartilage-like tissue in micropellet culture. CONCLUSIONS Our results show cell priming protocols carried out for four passages selectively differentiate stem cells to behave like chondrocytes, both in their motility response to applied electric field and their production of cartilaginous tissue.
Collapse
Affiliation(s)
- Andrea R. Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Curtis D. VandenBerg
- Department of Orthopaedic Surgery, St. Luke’s-Roosevelt Hospital Center, 1000 10th Ave, New York, NY 10019, USA
| | - Roy K. Aaron
- Department of Orthopaedic Surgery, Brown University, 100 Butler Drive, Providence, RI 02906, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Department of Mechanical Engineering, Columbia University, 500 W. 120th St, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Corresponding author: . Phone: (212) 854-6542
| |
Collapse
|
20
|
Skagen PS, Kruse HA, Horn T. Repair Mechanisms in Articular Cartilage—A Porcine in Vitro Study. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mr.2014.24009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Nam HY, Karunanithi P, Loo WC, Naveen S, Chen H, Hussin P, Chan L, Kamarul T. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 2013; 15:R129. [PMID: 24286235 PMCID: PMC3979160 DOI: 10.1186/ar4309] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Although it has been postulated that the use of marrow stimulation in combination with cell-based therapy may provide superior outcome, this has yet to be demonstrated. A pilot study was thus conducted to determine if bone marrow derived mesenchymal stromal cells (BM-MSCs) have modulatory effects on the repair outcomes of bone marrow stimulation (BMS) techniques. Methods Two full-thickness chondral 5 mm diameter defects were created in tandem on the medial condyle of left stifle joints of 18 Boer caprine (N = 18). Goats were then divided equally into three groups. Simultaneously, bone marrow aspirates were taken from the iliac crests from the goats in Group 1 and were sent for BM-MSC isolation and expansion in vitro. Six weeks later, BMS surgery, which involves subchondral drilling at the defect sites, was performed. After two weeks, the knees in Group 1 were given autologous intra-articular BM-MSCs (N = 6). In Group 2, although BMS was performed there were no supplementations provided. In Group 3, no intervention was administered. The caprines were sacrificed after six months. Repairs were evaluated using macroscopic assessment through the International Cartilage Repair Society (ICRS) scoring, histologic grading by O’Driscoll score, biochemical assays for glycosaminoglycans (GAGs) and gene expressions for aggrecan, collagen II and Sox9. Results Histological and immunohistochemical analyses demonstrated hyaline-like cartilage regeneration in the transplanted sites particularly in Group 1. In contrast, tissues in Groups 2 and 3 demonstrated mainly fibrocartilage. The highest ICRS and O’Driscoll scorings was also observed in Group 1, while the lowest score was seen in Group 3. Similarly, the total GAG/total protein as well as chondrogenic gene levels were expressed in the same order, that is highest in Group 1 while the lowest in Group three. Significant differences between these 3 groups were observed (P <0.05). Conclusions This study suggests that supplementing intra-articular injections of BM-MSCs following BMS knee surgery provides superior cartilage repair outcomes.
Collapse
|
22
|
A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm 2013; 447:139-49. [PMID: 23499757 DOI: 10.1016/j.ijpharm.2013.02.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
The aim of the study was to evaluate the effect of a cell-free hyaluronate/type I collagen/fibrin composite scaffold containing polyvinyl alcohol (PVA) nanofibers enriched with liposomes, basic fibroblast growth factor (bFGF) and insulin on the regeneration of osteochondral defects. A novel drug delivery system was developed on the basis of the intake effect of liposomes encapsulated in PVA nanofibers. Time-controlled release of insulin and bFGF improved MSC viability in vitro. Nanofibers functionalized with liposomes also improved the mechanical characteristics of the composite gel scaffold. In addition, time-controlled release of insulin and bFGF stimulated MSC recruitment from bone marrow in vivo. Cell-free composite scaffolds containing PVA nanofibers enriched with liposomes, bFGF, and insulin were implanted into seven osteochondral defects of miniature pigs. Control defects were left untreated. After 12 weeks, the composite scaffold had enhanced osteochondral regeneration towards hyaline cartilage and/or fibrocartilage compared with untreated defects that were filled predominantly with fibrous tissue. The cell-free composite scaffold containing PVA nanofibers, liposomes and growth factors enhanced migration of the cells into the defect, and their differentiation into chondrocytes; the scaffold was able to enhance the regeneration of osteochondral defects in minipigs.
Collapse
|
23
|
Anitua E, Sanchez M, De la Fuente M, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid. Knee Surg Sports Traumatol Arthrosc 2012; 20:1657-65. [PMID: 21987365 DOI: 10.1007/s00167-011-1697-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
PURPOSE Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. METHODS Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. RESULTS PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. CONCLUSIONS PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.
Collapse
Affiliation(s)
- E Anitua
- Private Practice in Implantology and Oral Rehabilitation in Vitoria, Vitoria, Spain.
| | | | | | | | | |
Collapse
|
24
|
Nie H, Lee CH, Tan J, Lu C, Mendelson A, Chen M, Embree MC, Kong K, Shah B, Wang S, Cho S, Mao JJ. Musculoskeletal tissue engineering by endogenous stem/progenitor cells. Cell Tissue Res 2012; 347:665-76. [PMID: 22382390 DOI: 10.1007/s00441-012-1339-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/23/2012] [Indexed: 12/13/2022]
Abstract
From its inception, tissue engineering has had three tenets: cells, biomaterial scaffolds and signaling molecules. Among the triad, cells are the center piece, because cells are the building blocks of tissues. For decades, cell therapies have focused on the procurement, manipulation and delivery of healthy cells for the treatment of diseases or trauma. Given the complexity and potential high cost of cell delivery, there is recent and surging interest to orchestrate endogenous cells for tissue regeneration. Biomaterial scaffolds are vital for many but not all, tissue-engineering applications and serve to accommodate or promote multiple cellular functions. Signaling molecules can be produced by transplanted cells or endogenous cells, or delivered specifically to regulate cell functions. This review highlights recent work in tissue engineering and cell therapies, with a focus on harnessing the capacity of endogenous cells as an alternative or adjunctive approach for tissue regeneration.
Collapse
Affiliation(s)
- Hemin Nie
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, Roberts S, Baba H. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 2012; 14:R31. [PMID: 22314040 PMCID: PMC3392826 DOI: 10.1186/ar3735] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/29/2011] [Accepted: 02/07/2012] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various connective tissue cells. Several techniques have been used for the clinical application of MSCs in articular cartilage repair; however, there are many issues associated with the selection of the scaffold material, including its ability to support cell viability and differentiation and its retention and degradation in situ. The application of MSCs via a scaffold also requires a technically demanding surgical procedure. The aim of this study was to test the outcome of intra-articular transplantation of mesenchymal stem cells suspended in hyaluronic acid (HA) in the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis (OA). METHODS Commercially available human MSCs were cultured, labeled with carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), suspended in either PBS or HA, and injected into the knee joints of 7-month-old animals. The control animals were injected with either PBS or HA alone. The animals were sacrificed at 1, 3, and 5 weeks post transplantation, the knee joints harvested, and fluorescent microscopic analysis was performed. Histological and immunohistochemical analysis were performed at 5 weeks post transplantation. RESULTS At 5 weeks post transplantation, partial cartilage repair was noted in the HA-MSC group but not in the other groups. Examination of CFDA-SE-labeled cells demonstrated migration, differentiation, and proliferation of MSC in the HA-MSC group. There was strong immunostaining for type II collagen around both residual chondrocytes and transplanted MSCs in the OA cartilage. CONCLUSION This scaffold-free and technically undemanding technique appears to result in the regeneration of articular cartilage in the spontaneous OA animal model. Although further examination of the long-term effects of transplantation is necessary, the findings suggest that intra-articular injection of HA-MSC mixture is potentially beneficial for OA.
Collapse
Affiliation(s)
- Mitsuhiko Sato
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Alexander Rodriguez Guerrero
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | - Sally Roberts
- Institute for Science & Technology in Medicine, Keele University at the RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Hisatoshi Baba
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
26
|
Santoro R, Braissant O, Müller B, Wirz D, Daniels A, Martin I, Wendt D. Real-time measurements of human chondrocyte heat production during in vitro proliferation. Biotechnol Bioeng 2011; 108:3019-24. [DOI: 10.1002/bit.23268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/31/2011] [Accepted: 07/08/2011] [Indexed: 11/08/2022]
|
27
|
Chen B, Qin J, Wang H, Magdalou J, Chen L. Effects of adenovirus-mediated bFGF, IL-1Ra and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits. Exp Mol Med 2011; 42:684-95. [PMID: 20733349 DOI: 10.3858/emm.2010.42.10.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study investigated the effects of adenovirus-mediated gene transfection of basic fibroblast growth factor (bFGF), bFGF combined with interleukin-1 receptor antagonist protein (IL-Ra) and/or insulin-like growth factor-1 (IGF-1) both in human osteoarthritis (OA) chondrocytes and rabbits OA model. Human OA chondrocytes were delivered by adenovirus-mediated bFGF, IL-Ra and IGF-1 vectors, respectively. Chondrocyte proliferation, glycosaminoglycan (GAG) content, expression of type II collagen, ADAMTS-5, MMP-13, MMP-3 and TIMP-1 were determined. Rabbit OA model was induced by anterior cruciate ligament transaction (ACLT) in knees. Adenoviral vectors encoding human bFGF, IL-Ra and IGF-1 were injected intraarticularly into the knee joints after ACLT. The effects of adenovirus-mediated gene transfection on rabbit OA were evaluated. In vitro, the transfected genes were expressed in cell supernatant of human OA chondrocytes. AdbFGF group significantly promoted chondrocyte proliferation, and increased GAG and type II collagen synthesis than in the OA group. As two or three genes were transfected in different combinations, there was significant enhancement on the GAG content, type II collagen synthesis, and TIMP-1 levels, while ADAMTS-5, MMP-13, and MMP-3 levels were reduced. In vivo, the transfected genes were expressed in synovial fluid of rabbits. Intraarticular delivery of bFGF enhanced the expression of type II collagen in cartilage and decreased cartilage Mankin score compared with the OA control group (P=0.047; P<0.01, respectively). Multiple-gene transfection in different combinations showed better results than bFGF transfection alone. This study suggests that bFGF gene transfection is effective in treating experimental OA. Multiple gene transfection has better biologic effects on OA.
Collapse
Affiliation(s)
- Biao Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
28
|
McGregor AJ, Amsden BG, Waldman SD. Chondrocyte repopulation of the zone of death induced by osteochondral harvest. Osteoarthritis Cartilage 2011; 19:242-8. [PMID: 21112408 DOI: 10.1016/j.joca.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/27/2010] [Accepted: 11/19/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Harvesting osteochondral grafts results in a zone of chondrocyte death (ZCD) in and around the periphery of the graft, creating a barrier for chondrocytes to migrate to the graft periphery, thus limiting cartilage-to-cartilage healing. The purpose of this study was to repopulate the induced ZCD through the combined effects of collagenase treatment and delivery of a chemotactic agent. DESIGN In bovine cartilage, the ZCD induced by the OATS™ osteochondral harvesting system was determined, followed by a corresponding collagenase treatment to penetrate the developed ZCD. The chemotactic potential of platelet derived growth factor (PDGF-bb), insulin-like growth factor I (IGF-I), and basic fibroblast growth factor (bFGF) (2.5-100 ng/mL) was then assessed using a modified Boyden chamber assay to select an appropriate agent to induce chondrocyte migration. Afterwards, the combined effects of collagenase treatment and chondrocyte chemotaxis on the repopulation of an induced ZCD were examined in cartilage explants over a 4-week-period. RESULTS The OATS™ osteochondral harvesting system induced a significant ZCD (173 μm, 95% CI: [72-274 μm]) in the grafts. Chondrocyte chemotaxis was induced by all agents investigated at concentrations greater than 25 ng/mL. After 4 weeks in culture, collagenase treatment alone reduced the ZCD by approximately 40% relative to untreated explants. Coupling the collagenase treatment with 25 ng/mL IGF-I reduced the ZCD by approximately 80% relative to untreated explants, and 65% relative to explants treated only with collagenase. CONCLUSION Treating cartilage explants with collagenase and 25 ng/mL IGF-I resulted in a decreased ZCD after a 4-week-period, and increased chondrocyte density within the induced ZCD.
Collapse
Affiliation(s)
- A J McGregor
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
29
|
Chiang H, Liao CJ, Wang YH, Huang HY, Chen CN, Hsieh CH, Huang YY, Jiang CC. Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C Methods 2010; 16:291-300. [PMID: 20187869 DOI: 10.1089/ten.tec.2009.0298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE autologous chondrocyte implantation usually requires in vitro cell expansion before implantation. We compared the efficacy of cartilage regeneration by in vitro-expanded chondrocytes at high density and freshly harvested chondrocytes at low density. DESIGN surgically created osteochondral defects at weight-bearing surface of femoral condyles of domestic pigs were repaired by biphasic cylindrical porous plugs of DL-poly-lactide-co-glycolide and beta-tricalcium phosphate. Plugs were seeded with autologous chondrocytes in its chondral phase, and press-fit to defects. Seeded cells were (1) in vitro-expanded chondrocytes harvested from stifle joint 3 weeks before implantation and (2) freshly harvested chondrocytes from recipient knee. Seeding densities were 70 x 10(6) and 7 x 10(6) cells/mL, respectively. Cell-free plugs served as control and defects remained untreated as null control. Outcome was examined at 6 months with International Cartilage Repair Society Scale. RESULTS the two experimental groups were repaired by hyaline cartilage with collagen type II and Safranin-O. Tissue in control group was primarily fibrocartilage. No regeneration was found in null control. Experimental groups had higher mean International Cartilage Repair Society scores than control in surface, matrix, and cell distribution, but were comparable with control in cell viability, subchondral bone, and mineralization. No significant difference existed between two experimental groups in any of the six categories. Uni-axial indentation test revealed similar creeping stress-relaxation property as native cartilage on experimental, but not control, specimen. CONCLUSIONS cartilage could regenerate in both experimental models, in comparable quality. Culture of chondrocytes before implantation is not necessary.
Collapse
Affiliation(s)
- Hongsen Chiang
- National Taiwan University Hospital, and College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yagi M, Sato N, Mitsui Y, Gotoh M, Hamada T, Nagata K. Hyaluronan modulates proliferation and migration of rabbit fibroblasts derived from flexor tendon epitenon and endotenon. J Hand Surg Am 2010; 35:791-6. [PMID: 20438995 DOI: 10.1016/j.jhsa.2010.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE There is a growing body of evidence supporting the use of hyaluronan (HA) for treatment of injured tendons, although the mechanism of the healing effect has not yet been clarified. We therefore investigated the effects of HA on the proliferation and migration of tendon fibroblasts derived from rabbit flexor tendon epitenon and endotenon. METHODS From explanted rabbit intrasynovial flexor tendons (n = 5), we cultured tendon fibroblasts derived from the epitenon and endotenon. CD44 expression on the tendon fibroblasts was detected by flow cytometric analysis. Various concentrations of HA (0.1-5.0 mg/mL) were added to monolayer-cultured tendon fibroblasts. We evaluated cell proliferation by recording changes in cell number, and measured cell migration by wound-healing assay. RESULTS Flow cytometric analysis detected CD44 expression on the tendon fibroblasts. Treatment with HA at various concentrations notably and dose dependently inhibited cell proliferation and promoted cell migration. CONCLUSIONS Hyaluronan modulates the proliferation and migration of rabbit fibroblasts derived from the flexor tendon epitenon and endotenon.
Collapse
Affiliation(s)
- Masaharu Yagi
- Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Lee YT, Shao HJ, Wang JH, Liu HC, Hou SM, Young TH. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro. J Orthop Res 2010; 28:492-6. [PMID: 19890996 DOI: 10.1002/jor.21029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intraarticular injection of hyaluronan (hyaluronic acid; HA) is the common way to treat osteoarthritis (OA) of knees. This treatment cannot only maintain the viscoelastic properties of knee but also release the OA pain. However, the exact molecular mechanism is unknown. In this study, after human synovial cells were stimulated with HA and Hylan (Synvisc) for 24 h, real-time polymerase chain reaction (real-time PCR) was used to detect the alteration of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) gene expression, which were specific genes related to pathogenesis of OA knees. Our results illustrated that both HA and Hylan might not cause cytotoxicity or apoptosis of synovial cells in serum deprivation environment. The gene expressions of TGF-beta1 and VEGF were significantly increased at the concentration of 0.1 mg/mL HA and 0.1 mg/mL Hylan, respectively (alpha < 0.05). The synovial cells with treatment of 0.1 mg/mL Hylan decreased the CTGF gene expression (0.66-fold) and VEGF (0.78-fold) compared to 0.1 mg/mL HA (alpha < 0.05). We suggested that the profile of CTGF, TGF-beta1, and VEGF gene expressions in our study might provide the rational mechanism for the therapeutic effect of hyaluronan on OA knees.
Collapse
Affiliation(s)
- Yu-Tsang Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Jen Ai Road, Sec 1, Taipei, 100, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell Tissue Res 2009; 339:421-7. [PMID: 20012649 DOI: 10.1007/s00441-009-0901-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Articular cartilage (AC) heals poorly and effective host-tissue integration after reconstruction is a concern. We have investigated the ability of implanted chondrocytes to attach at the site of injury and to be incorporated into the decellularized host matrix adjacent to a defect in an in vitro human explant model. Human osteochondral dowels received a standardized injury, were seeded with passage 3 chondrocytes labelled with PKH 26 and compared with two control groups. All dowels were cultured in vitro, harvested at 0, 7, 14 and 28 days and assessed for chondrocyte adherence and migration into the region of decellularized tissue adjacent to the defects. Additional evaluation included cell viability, general morphology and collagen II production. Seeded chondrocytes adhered to the standardized defect and areas of lamina splendens disruption but did not migrate into the adjacent acellular region. A difference was noted in viable-cell density between the experimental group and one control group. A thin lattice-like network of matrix surrounded the seeded chondrocytes and collagen II was present. The results indicate that cultured human chondrocytes do indeed adhere to regions of AC matrix injury but do not migrate into the host tissue, despite the presence of viable cells. This human explant model is thus an effective tool for studying the interaction of implanted cells and host tissue.
Collapse
|
33
|
The effect of cell sedimentation on measuring chondrocyte population migration using a Boyden chamber. J Theor Biol 2009; 261:610-25. [DOI: 10.1016/j.jtbi.2009.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 11/22/2022]
|
34
|
Abstract
Cartilage repair is a very successful pioneering area of regenerative medicine in which techniques of in situ regeneration and cell and tissue transplantation dominate over cell-free approaches to generate durable neocartilage. This review concentrates on advantages and limitations of mesenchymal stem cell (MSC)-based cartilage repair strategies induced by marrow stimulation. Detailed knowledge on the biology of MSC will be discussed in light of the requirements for MSC recruitment, retention, proliferation and chondrogenic differentiation. An improved microenvironment with timely correlated signals from biomaterials, growth factors, proteases, adjacent cartilage and subchondral bone may be key to a third generation of techniques to regenerate hyaline cartilage.
Collapse
Affiliation(s)
- W Richter
- Department of Experimental Orthopaedics, Orthopaedic University Hospital, Heidelberg, Germany.
| |
Collapse
|
35
|
Parker NP, Bailey SS, Walner DL. Effects of basic fibroblast growth factor-2 and hyaluronic acid on tracheal wound healing. Laryngoscope 2009; 119:734-9. [DOI: 10.1002/lary.20131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Wescoe KE, Schugar RC, Chu CR, Deasy BM. The Role of the Biochemical and Biophysical Environment in Chondrogenic Stem Cell Differentiation Assays and Cartilage Tissue Engineering. Cell Biochem Biophys 2008; 52:85-102. [DOI: 10.1007/s12013-008-9029-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2008] [Indexed: 01/13/2023]
|
37
|
Abstract
Migration of chondrocytes and mesenchymal stem cells (MSCs) may be important in cartilage development, tissue response to injury, and in tissue engineering. This study analyzed growth factors and cytokines for their ability to induce migration of human articular chondrocytes and bone marrow-derived mesenchymal stem cells in Boyden chamber assays. In human articular chondrocytes serum induced dose- and time-dependent increases in cell migration. Among a series of growth factors and cytokines tested only PDGF induced a significant increase in cell migration. The PDGF isoforms AB and BB were more potent than AA. There was an aging-related decline in the ability of chondrocytes to migrate in response to serum and PDGF. Human bone marrow MSC showed significant chemotaxis responses to several factors, including FBS, PDGF, VEGF, IGF-1, IL-8, BMP-4, and BMP-7. In summary, these results demonstrate that directed cell migration is inducible in human articular chondrocytes and MSC. PDGF is the most potent factor analyzed, and may be useful to promote tissue integration during cartilage repair or tissue engineering.
Collapse
Affiliation(s)
- Yasunori Mishima
- Division of Arthritis Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Davies LC, Blain EJ, Caterson B, Duance VC. Chondroitin sulphate impedes the migration of a sub-population of articular cartilage chondrocytes. Osteoarthritis Cartilage 2008; 16:855-64. [PMID: 18222711 DOI: 10.1016/j.joca.2007.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/11/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether chondroitin sulphate (CS) impedes the migration of primary articular chondrocytes. DESIGN Articular chondrocytes were isolated from young and skeletally mature bovine animals. Boyden chambers were used to quantify chondrocyte migration on aggrecan in the presence and absence of CS chains. A novel in vitro model of cell migration into articular cartilage explants was designed to visualise and quantify the migration of labelled chondrocytes into cartilage matrix which had been treated with chondroitinase ABC to remove CS chains present. RESULTS A consistent trend of increased migration with both age groups of a sub-population of chondrocytes was demonstrated on aggrecan in the absence of CS. These data were supported by results from the in vitro model of chondrocyte migration which demonstrated increasing numbers of a chondrocyte sub-population from both age groups of cartilage migrating into the chondroitinase ABC digested cartilage explants with time in culture. Minimal migration of these chondrocytes was demonstrated into phosphate buffered saline (PBS) treated control explants. CONCLUSIONS We confirm that a sub-population of chondrocytes isolated from both young and skeletally mature articular cartilages have the ability to migrate. We also demonstrate that CS chains inhibit the migration of these articular chondrocytes and that their removal by chondroitinase ABC digestion enhances the migration of these chondrocytes. Such findings may provide a clinical application for improving cell-based cartilage repair strategies by enhancing integration between endogenous and repair tissue.
Collapse
Affiliation(s)
- L C Davies
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, UK
| | | | | | | |
Collapse
|
39
|
Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 2007; 25:1277-90. [PMID: 17576624 DOI: 10.1002/jor.20442] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autologous chondrocyte implantation (ACI) has been recently used to treat cartilage defects. Partly because of the success of mosaicplasty, a procedure that involves the implantation of native osteochondral plugs, it is of potential significance to consider the application of ACI in the form of biphasic osteochondral composites. To test the clinical applicability of such composite construct, we repaired osteochondral defect with ACI at low cell-seeding density on a biphasic scaffold, and combined graft harvest and implantation in a single surgery. We fabricated a biphasic cylindrical porous plug of DL-poly-lactide-co-glycolide, with its lower body impregnated with beta-tricalcium phosphate as the osseous phase. Osteochondral defects were surgically created at the weight-bearing surface of femoral condyles of Lee-Sung mini-pigs. Autologous chondrocytes isolated from the cartilage were seeded into the upper, chondral phase of the plug, which was inserted by press-fitting to fill the defect. Defects treated with cell-free plugs served as control. Outcome of repair was examined 6 months after surgery. In the osseous phase, the biomaterial retained in the center and cancellous bone formed in the periphery, integrating well with native subchondral bone with extensive remodeling, as depicted on X-ray roentgenography by higher radiolucency. In the chondral phase, collagen type II immunohistochemistry and Safranin O histological staining showed hyaline cartilage regeneration in the experimental group, whereas only fibrous tissue formed in the control group. On the International Cartilage Repair Society Scale, the experimental group had higher mean scores in surface, matrix, cell distribution, and cell viability than control, but was comparable with the control group in subchondral bone and mineralization. Tensile stress-relaxation behavior determined by uni-axial indentation test revealed similar creep property between the surface of the experimental specimen and native cartilage, but not the control specimen. Implanted autologous chondrocytes could survive and could yield hyaline-like cartilage in vivo in the biphasic biomaterial construct. Pre-seeding of osteogenic cells did not appear to be necessary to regenerate subchondral bone.
Collapse
Affiliation(s)
- Ching-Chuan Jiang
- National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
GOALS To review the literature on chondrocyte movements and to develop plausible hypothesis for further work. DESIGN Chondrocyte movements are herein defined as translocations of the cell body. A brief overview of cell migration in other cell types is presented to set the stage for a discussion of chondrocyte moves; this includes a discussion of the challenges that cells find when moving within tissues. Reports of isolated chondrocyte migration in vitro (isolated cell systems) and ex vivo (cartilage organ cultures) are then summarized, followed by a discussion of recent studies that infer chondrocyte movements in vivo. RESULTS Investigators from different laboratories have observed chondrocyte motility in vitro. I became interested in the question of whether articular chondrocytes retained their phenotype during their migratory excursions. We devised a simple method to separate migratory and stationary chondrocytes and then showed that migratory chondrocytes synthesized collagen II but not I--consistent with a differentiated phenotype. Our time-lapse video microscopy studies showed that the cells displayed appropriate movement kinetics, albeit with low speed and directionality. Similarly, others have presented data consistent with slow movement of chondrocytes out of cartilage explants. It is important to decipher whether these in vitro movements reflect physiological states and if so, which events are simulated. Examples of in vivo studies that have inferred chondrocyte movements include those describing rotational or gliding movements of chondrocytes in the proliferative zone of the growth plate and its importance in the growth process; and the notion that chondrocytes move from the cartilage endplates to the nucleus pulposus (NP) in the spine of rabbits and rats during development. Such studies are consistent with the hypothesis that chondrocytes exhibit highly controlled and specialized movements during tissue growth and remodeling in vivo. On the other hand, the cartilage explant studies elicit interest in the possibility that matrix injuries resulting in disruption of the collagen network of adult cartilages provide a permissive environment for chondrocyte motility. CONCLUSIONS The case for in vivo chondrocyte motility remains to be proven. However, the in vitro and in vivo data on chondrocyte movements present an argument for further thought and studies in this area.
Collapse
Affiliation(s)
- T I Morales
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects--a porcine model. Stem Cells 2007; 25:2964-71. [PMID: 17656639 DOI: 10.1634/stemcells.2006-0311] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current techniques in biological resurfacing of cartilage defects require an open arthrotomy or arthroscopy and involve the direct transplantation of isolated cells and/or scaffolds or whole tissue grafts with chondrogenic potential onto the cartilage defect. Our study investigates the possibility of direct intra-articular injection of mesenchymal stem cells suspended in hyaluronic acid (HA) as an alternative to the much more invasive methods currently available. A partial-thickness (without penetration of the subchondral bone) cartilage defect was created in the medial femoral condyle of an adult minipig. Mesenchymal stem cells from the iliac crest marrow of the same pig harvested in a separate procedure and suspended in 2 milliliters of hylan G-F 20 (Synvisc) were injected intra-articularly after the creation of the defect. This was followed by two more injections of hylan G-F 20 (HA) at weekly intervals. Either saline or HA was injected into the knees of the controls. The pigs were sacrificed at 6 and 12 weeks for morphological and histological analysis. The cell-treated groups showed improved cartilage healing both histologically and morphologically at 6 and 12 weeks compared with both controls. The use of intra-articular injections of mesenchymal stem cells suspended in HA is a viable option for treating large cartilage defects. This would be further explored in clinical trials.
Collapse
Affiliation(s)
- Kevin B L Lee
- Department of Orthopaedic Surgery, National University of Singapore, Lower Kent Ridge Road, Singapore 119074, Republic of Singapore
| | | | | | | | | |
Collapse
|
42
|
Kayakabe M, Tsutsumi S, Watanabe H, Kato Y, Takagishi K. Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 2007; 8:343-53. [PMID: 16923610 DOI: 10.1080/14653240600845070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, suggesting that these cells are an attractive cell source for cartilage tissue engineering approaches. Various methods, such as using hyaluronan-based materials, have been employed to improve transplantation for repair. Our objective was to study the effects of autologous transplantation of rabbit MSC with hyaluronic acid gel sponges into full-thickness osteochondral defects of the knee. METHODS Rabbit BM-derived MSC were cultured and expanded with fibroblast growth factor (FGF). Specimens were harvested at 4 and 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type II collagen and CD44. RESULTS The regenerated area after autologous transplantation of hyaluronic acid gel sponge loaded with MSC into the osteochondral defect at 12 weeks after surgery showed well-repaired cartilage tissue, resembling the articular cartilage of the surrounding structure, of which the histologic score was significantly better than that of the untreated osteochondral defect. In the regenerated cartilage, type II collagen was found in the pericellular matrix of regenerative chondrocytes, while CD44 expression in the regenerative tissue could not be revealed. DISCUSSION These data suggest that the autologous transplantation of MSC embedded in hyaluronan-based material may support chondrogenic differentiation and be useful for osteochondral defect repair.
Collapse
Affiliation(s)
- M Kayakabe
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Todd P Stitik
- Department of Physical Medicine and Rehabilitation, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
44
|
Giannoni P, Cancedda R. Articular chondrocyte culturing for cell-based cartilage repair: needs and perspectives. Cells Tissues Organs 2007; 184:1-15. [PMID: 17190975 DOI: 10.1159/000096946] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2006] [Indexed: 01/13/2023] Open
Abstract
Articular cartilage displays a limited capacity of self-regeneration after injury. Thus, the biology of this tissue and its cellular components - the chondrocytes - has become the focus of several investigations, driven by tissue engineering and the basic and clinical research fields, aiming to ameliorate the present clinical approaches to cartilage repair. In this work, we present a brief recapitulation of the events that lead to cartilage development during the skeletal embryonal growth. The intrinsic phenotypic plasticity of the mesenchymal precursors and the adult chondrocytes is evaluated, dependent on the cell source, its physiopathological state, and as a function of the donor's age. The phenotypic changes induced by the basic culturing techniques are also taken into account, thus highlighting the phenotypic plasticity of the chondrocyte as the main property which could couple the differentiation process to the repair process. Chondrocyte proliferation and the contemporary maintenance of the chondrogenic differentiation potential are regarded as the two primary goals to be achieved in order to fulfill the quantitative needs of the clinical applications and the qualitative requirements of a properly repaired tissue. In this light, the effects of several growth factors and medium supplements are investigated. Finally, the latest improvements in culturing conditions and their possible clinical applications are presented as well.
Collapse
|
45
|
Shimpuku E, Hamada K, Handa A, Kobayashi K, Nakajima T, Yamazaki H, Nakamura M, Fukuda H, Mochida J. Molecular effects of sodium hyaluronate on the healing of avian supracoracoid tendon tear: according to in situ hybridization and real-time polymerase chain reaction. J Orthop Res 2007; 25:173-84. [PMID: 17068816 DOI: 10.1002/jor.20277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hyluronic acid (HA) on tissue healing has been controversial. We examined the molecular pharmacology of HA injection at the suture site in an acute model of supracoracoid tendon laceration using chickens, an injury of a nonweight-bearing joint considered similar to the human shoulder. Expression of mRNAs encoding alpha I (I) and alphaI (III) procollagens was localized using in situ hybridization (ISH). Intensities of mRNA expression for alpha I (I) and alpha I (III) procollagens, transforming growth factor-beta1 (TGF- beta1), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF) were determined by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Histologically, chickens with HA injection (HA group) showed early restoration of continuity at the laceration site than saline-injection controls (saline-injection group). By ISH, the expression rate of cells at the lesion site that contained alpha I (I) and alpha I (III) procollagen mRNAs were somewhat higher in the HA group than in the saline-injection group. By RT-PCR, the HA- and saline-injection groups showed no significant difference in expression of alpha I (I) and alpha I (III) procollagen mRNA between weeks 1 and 6. The saline -injection group exhibited significant decrease in TGF-beta1 expression between weeks 1 and 3, and in bFGF expression between weeks 1 and 2; however, the HA group showed no such decrease. As for IGF, no difference was appreciable in both groups between weeks 1 and 6. A single injection of HA could cause earlier restoration of continuity at the lacerated site of the supracoracoid tendon.
Collapse
Affiliation(s)
- Eiji Shimpuku
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chou CH, Cheng WTK, Lin CC, Chang CH, Tsai CC, Lin FH. TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2006; 77:338-48. [PMID: 16470812 DOI: 10.1002/jbm.b.30432] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tri-co-polymer with composition of gelatin, hyaluronic acid and chondroitin-6-sulfate has been used to mimic the cartilage extracellular matrix as scaffold for cartilage tissue engineering. In this study, we try to immobilize TGF-beta1 onto the surface of the tri-co-polymer sponge to suppress the undesired differentiation during the cartilage growth in vitro. The scaffold was synthesized with a pore size in a range of 300-500 microm. TGF-beta1 was immobilized on the surface of the tri-co-polymer scaffold with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Tri-co-polymer scaffolds with and without TGF-beta1 were seeded with porcine chondrocytes and cultured in a spinner flask for 2, 4, and 6 weeks. The chondrocytes were characterized by the methods of immunohistochemical staining with anti-type II collagen and anti-S-100 protein monoclonal antibody, and RT-PCR. After culturing for 4 weeks, chondrocytes showed positive in S-100 protein, Alcian blue, and type II collagen for the scaffold with TGF-beta1 immobilization. There is no observed type I and type X collagen expression in the scaffolds from the observation of RT-PCR. In addition, the scaffold without TGF-beta1 immobilization, type X collagen, can be detected after cultured for 2 weeks. Type I collagen was progressively expressed after 4 weeks. These results can conclude that TGF-beta1 immobilized scaffold can suppress chondrocytes toward prehypertrophic chondrocytes and osteolineage cells. The tri-co-polymer sponge with TGF-beta1 immobilization should have a great potential in cartilage tissue engineering in the future.
Collapse
Affiliation(s)
- Cheng-Hung Chou
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E. Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg 2005; 125:683-92. [PMID: 16189685 DOI: 10.1007/s00402-005-0052-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Growth factors including basic fibroblast growth factor (bFGF) are expected to be useful tools for enhancing osteochondral repair. However, suitable carriers are required to deliver a growth factor to the injury site. We evaluated the effects of intraarticular injection of bFGF with hyaluronic acid (HA) on osteochondral repair and the potential carrier role of HA in this treatment. MATERIALS AND METHODS Osteochondral defect was created in the medial femoral condyle of rabbits and received single or weekly intraarticular injection of bFGF (1 or 10 microg) with or without HA. Prior to the administration, bFGF was incubated with HA or vehicle-saline for 24 h at 4 degrees C. Four weeks after the initial injection, the animals were killed and the defect was evaluated grossly (12-point scale) and histologically (16-point scale). The effect of single injection of bFGF (1 microg) with HA was also compared to that of the carrier known as gelatin microspheres (GM) incorporating bFGF. RESULTS Weekly-administered bFGF alone induced undesirable side effects such as inflammatory responses and osteophyte formation. However, weekly-administered 1 mug of bFGF with HA yielded significantly better osteochondral repair than each treatment alone in gross and histological examinations with minimal side effects (P < 0.05). Single administration of 1 microg bFGF with HA but not GM incorporating bFGF showed significantly better osteochondral repair comparing to the vehicle control (P < 0.05). CONCLUSION Low-dose bFGF with HA was effective for osteochondral repair in rabbits. The significant osteochondral reparative role of bFGF with HA comparing with GM incorporating bFGF might be explained by the potential carrier role of HA and possible synergistic action between these two agents. The combination of HA with bFGF significantly suppressed the side effects resulting from single use of bFGF.
Collapse
Affiliation(s)
- Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE Enhancement of the healing of the tendon-bone junction is important for anterior cruciate ligament reconstruction using the hamstring tendon. We examined the effect of hyaluronan injection into the bone tunnel on the healing of the tendon-bone junction. TYPE OF STUDY Experimental study. METHODS The medial half of the patella tendon of Japanese white rabbits was detached from the tibial insertion and transplanted into a drill hole in the tibial tuberosity with a pullout fixation. The bone tunnel was filled with 0.5 mL of hyaluronan (MW, 0.8 million) or without hyaluronan in the contralateral knee as the control. Biomechanical testing was performed at 3 (n = 6) and 6 weeks (n = 4) with histologic analysis (n = 3). RESULTS Maximum failure load of the patella-patellar tendon-tibia complex in the knee treated with hyaluronan was higher than that in the control side in each rabbit at 3 weeks: 98 +/- 6 N in the hyaluronan group and 76 +/- 12 N in the control group (P < .01). Histologic analysis showed that hyaluronan improved tendon healing. Although maximum failure load increased in both groups, the failure load was not significant at 6 weeks. CONCLUSIONS Our study found improved tendon healing to bone in the first 3 weeks for Japanese white rabbits treated with hyaluronan. CLINICAL RELEVANCE Because hyaluronan treatment produces a clinical effect, even in only the early phase after ligament surgery, it could improve rehabilitation and produce a better outcome for ligament reconstruction.
Collapse
Affiliation(s)
- Kazuyoshi Yagishita
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
49
|
Kobayashi T, Watanabe H, Yanagawa T, Tsutsumi S, Kayakabe M, Shinozaki T, Higuchi H, Takagishi K. Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. ACTA ACUST UNITED AC 2005; 87:1426-33. [PMID: 16189322 DOI: 10.1302/0301-620x.87b10.16160] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the ex vivo expansion medium to avoid the transmission of dangerous transfectants during clinical reconstruction procedures. Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient ex vivo expansion of human bone-marrow mesenchymal stem cells possessing multidifferentiation potential and may be better than fetal bovine serum in preserving high motility.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Henson FMD, Bowe EA, Davies ME. Promotion of the intrinsic damage-repair response in articular cartilage by fibroblastic growth factor-2. Osteoarthritis Cartilage 2005; 13:537-44. [PMID: 15922188 DOI: 10.1016/j.joca.2005.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 02/06/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the effect of fibroblastic growth factor-2 (FGF-2) on the intrinsic damage-repair response in articular cartilage in vitro. METHODS Articular equine cartilage explants, without subchondral bone, had a single impact load of 500 g applied from a height of 2.5 cm. Explants were then cultured in 0, 12, 25, 50 or 100 ng/ml FGF-2 for up to 28 days. Unimpacted discs served as controls for each time-point. Histological and immunohistochemical techniques were used to quantify and characterise the response of putative chondrocyte progenitor cells (CPC) to damage and FGF-2 treatment. RESULTS FGF-2 significantly accelerated the appearance and increased the numbers of de novo repair cells identified histologically at the cartilage surface. The response was affected by the dose of FGF-2. The repair cells were shown to be chondrocytes by their expression of collagen types II, IX/XI, but not of type I collagen. In addition, these cells, and those underlying the articular surface, were shown to be immunopositive for Notch-1 and PCNA, markers for proliferating cartilage progenitor cells. CONCLUSIONS The results of this study indicate that, following single impact load, CPC can be stimulated in mature articular cartilage in vitro. These CPC and the cells arising from them appear to represent the cartilage's response to damage. The timing of the appearance of CPC and their overall numbers can be significantly increased by FGF-2, providing further evidence for an important role for FGF-2 in modulating cartilage repair. These results indicate that further study into the mechanisms of repair in mature cartilage using this in vitro model are vital in understanding the repair capacity of mature cartilage.
Collapse
Affiliation(s)
- F M D Henson
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | |
Collapse
|