1
|
Chang SY, Lee MY. Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency. Photobiomodul Photomed Laser Surg 2024. [PMID: 39347595 DOI: 10.1089/photob.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Objective: Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. Materials and Methods: We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. Results: The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. Conclusion: Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Lee MY, Jung SK, Jang J, Choi H, Choung YH, Jang JH. Sialyllactose preserves residual hearing after cochlear implantation. Sci Rep 2024; 14:13376. [PMID: 38862572 PMCID: PMC11167013 DOI: 10.1038/s41598-024-62344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
In individuals with hearing loss, protection of residual hearing is essential following cochlear implantation to facilitate acoustic and electric hearing. Hearing preservation requires slow insertion, atraumatic electrode and delivery of the optimal quantity of a pharmacological agent. Several studies have reported variable hearing outcomes with osmotic pump-mediated steroid delivery. New drugs, such as sialyllactose (SL) which have anti-inflammatory effect in many body parts, can prevent tissue overgrowth. In the present study, the positive effects of the pharmacological agent SL against insults were evaluated in vitro using HEI-OC1 cells. An animal model to simulate the damage due to electrode insertion during cochlear implantation was used. SL was delivered using osmotic pumps to prevent loss of the residual hearing in this animal model. Hearing deterioration, tissue fibrosis and ossification were confirmed in this animal model. Increased gene expressions of inflammatory cytokines were identified in the cochleae following dummy electrode insertion. Following the administration of SL, insertion led to a decrease in hearing threshold shifts, tissue reactions, and inflammatory markers. These results emphasize the possible role of SL in hearing preservation and improve our understanding of the mechanism underlying hearing loss after cochlear implantation.
Collapse
Affiliation(s)
- Min Young Lee
- Department of Otolaryngology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Seo-Kyung Jung
- Department of Otorhinolaryngology, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Jongmoon Jang
- Department of Functional Ceramics, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otorhinolaryngology, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Jeong Hun Jang
- Department of Otorhinolaryngology, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.
| |
Collapse
|
3
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
4
|
Hu Y, Fang L, Zhang H, Zheng S, Liao M, Cui Q, Wei H, Wu D, Cheng H, Qi Y, Wang H, Xin T, Wang T, Chai R. Emerging biotechnologies and biomedical engineering technologies for hearing reconstruction. SMART MEDICINE 2023; 2:e20230021. [PMID: 39188297 PMCID: PMC11235852 DOI: 10.1002/smmd.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hearing impairment is a global health problem that affects social communications and the economy. The damage and loss of cochlear hair cells and spiral ganglion neurons (SGNs) as well as the degeneration of neurites of SGNs are the core causes of sensorineural hearing loss. Biotechnologies and biomedical engineering technologies provide new hope for the treatment of auditory diseases, which utilizes biological strategies or tissue engineering methods to achieve drug delivery and the regeneration of cells, tissues, and even organs. Here, the advancements in the applications of biotechnologies (including gene therapy and cochlear organoids) and biomedical engineering technologies (including drug delivery, electrode coating, electrical stimulation and bionic scaffolds) in the field of hearing reconstruction are presented. Moreover, we summarize the challenges and provide a perspective on this field.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Shasha Zheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qingyue Cui
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical DisciplineNanjingChina
| | - Danqi Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
The Effect of Pluronic-Coated Gold Nanoparticles in Hearing Preservation Following Cochlear Implantation-Pilot Study. Audiol Res 2022; 12:466-475. [PMID: 36136854 PMCID: PMC9498366 DOI: 10.3390/audiolres12050047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: During cochlear implantation, electrode insertion can cause cochlear damage, inflammation, and apoptosis, which can affect the residual hearing. Nanoparticles are increasingly studied as a way to increase the availability of inner ear protective factors. We studied the effect on rats of Pluronic-coated gold nanoparticles (Plu-AuNPs) containing dexamethasone, which were applied locally in the rat’s middle ear following the implant procedure. Methods: Seven rats were used in the study. The right ear served as a model for the Dex-Plu-AuNP group. Following the intracochlear dummy electrode insertion through the round window, Dex-Plu-AuNPs were placed in the round window niche. In the right ear, following the same insertion procedure, free dexamethasone (Dex) was placed in the same manner. Auditory brainstem response thresholds (click stimulus, pure tones at 8 kHz, 16 kHz, 24 kHz, and 32 kHz) were measured before and one week after the procedure. A two-tailed T-test was used for the variables. Statistical significance was set as p < 0.05. Results: In the Dex-Plu-AuNP group, the threshold shift was less than that in the free dexamethasone group, but no statistical significance was noted between the groups. When compared individually, only the 8 kHz frequency showed statistically significant, better results after one week, in favor of the Dex-Plu-AuNP group. The mean postoperative 8 kHz threshold in the Dex-Plu-AuNPs was significantly lower than that of the control group (p = 0.048, t-test). For the other frequencies, statistical analysis showed no significant differences between the mean threshold shifts of the two cohorts. Conclusions: The local application of Plu-AuNPs containing dexamethasone following cochlear implantation may better protect the residual hearing than dexamethasone alone, but a larger sample size is needed to reach a possible statistical significance. Dex-Plu-AuNPs do not seem to cause ototoxicity and may be used as a carrier for other agents. In a clinical setting, Dex-Plu-AuNPs may have the effect of protecting lower frequencies in patients with partial deafness who are candidates for electric acoustic stimulation (EAS). If we consider this tendency, Dex-Plu-AuNPs may also be beneficial for patients with Ménière’s disease.
Collapse
|