1
|
Rose O, Croonenberg T, Clemens S, Hinteregger T, Eppacher S, Huber-Cantonati P, Garcia-Miralles M, Liuni R, Dossena S. Cisplatin-Induced Hearing Loss, Oxidative Stress, and Antioxidants as a Therapeutic Strategy-A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:1578. [PMID: 39765905 PMCID: PMC11673797 DOI: 10.3390/antiox13121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Cisplatin is an established component of treatment protocols for various solid malignancies but carries a significant potential for serious adverse effects. Ototoxicity from cisplatin treatment is an important dose-limiting toxicity that manifests as bilateral, progressive, irreversible, dose-dependent sensorineural hearing loss, ear pain, tinnitus, and vestibular dysfunction. Despite the recent approval of sodium thiosulphate for the prevention of cisplatin-induced hearing loss (CIHL) in pediatric patients, structured prevention programs are not routinely implemented in most hospitals, and reducing platinum-induced ototoxicity in adults remains an important clinical problem without established treatment options. Cochlear oxidative stress plays a fundamental role in CIHL. Here, we review the molecular mechanisms leading to oxidative stress in CIHL and the clinical and preclinical studies testing antioxidants in CIHL to guide future clinical trials in assessing the efficacy and safety of candidate antioxidant compounds in this clinical setting.
Collapse
Affiliation(s)
- Olaf Rose
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tim Croonenberg
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stephanie Clemens
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Hinteregger
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stefanie Eppacher
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Marta Garcia-Miralles
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Raffaella Liuni
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
- Research and Innovation Center Regenerative Medicine & Novel Therapies (FIZ RM&NT), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
3
|
Lee J, Fernandez K, Cunningham LL. Hear and Now: Ongoing Clinical Trials to Prevent Drug-Induced Hearing Loss. Annu Rev Pharmacol Toxicol 2024; 64:211-230. [PMID: 37562496 DOI: 10.1146/annurev-pharmtox-033123-114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.
Collapse
Affiliation(s)
- John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lisa L Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
4
|
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-Acetylcysteine on Cisplatin Toxicity: A Review of the Literature. Biologics 2024; 18:7-19. [PMID: 38250216 PMCID: PMC10799624 DOI: 10.2147/btt.s438150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
N-acetylcysteine (NAC) is a membrane-permeable cysteine precursor capable of enhancing the intracellular cysteine pool, enhancing cellular glutathione (GSH) synthesis, and thus potentiating the endogenous antioxidant mechanism. Late administration of NAC after cisplatin has been shown in different in vivo studies to reduce the side effects caused by various toxicities at different levels without affecting the antitumor efficacy of platinum, improving total and enzymatic antioxidant capacity and decreasing oxidative stress markers. These characteristics provide NAC with a rationale as a potentially effective chemo protectant in cisplatin-based therapeutic cycles. NAC represents a potential candidate as a chemoprotective agent to decrease toxicities secondary to cisplatin treatment. It suggests that it could be used in clinical trials, whereby the effective dose, timing, and route should be adjusted to optimize chemoprotection. This review provides an overview of the effect of NAC on cisplatin toxicity, a drug widely used in the clinic in adults and children.
Collapse
Affiliation(s)
- Angeles Citlali Zavala-Valencia
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, Mexico
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
| | | | | | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
5
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|