1
|
Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. PLANTA 2024; 259:103. [PMID: 38551683 DOI: 10.1007/s00425-024-04378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608, Canterbury, New Zealand
| | - E I Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, Sharif R, Anand A, Corpas FJ, Jin W, Varshney RK. Assessment of proline function in higher plants under extreme temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:379-395. [PMID: 36748909 DOI: 10.1111/plb.13510] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid 'proline' in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop 'temperature-smart' plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing 'temperature-smart' future crop plants.
Collapse
Affiliation(s)
- A Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - S Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - S Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - M U Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - F Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - S Haider
- Plant Biochemistry and Molecular Biology Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - R Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - A Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - W Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - R K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
3
|
Huibo Z, Yong Z, Rui L, Guorui L, Jianjun D, Qi W, Xiaotian L, Mingda Y, Yanpeng W, Zhiyan W, Fenglan H. Analysis of the mechanism of Ricinus communis L. tolerance to Cd metal based on proteomics and metabolomics. PLoS One 2023; 18:e0272750. [PMID: 36862668 PMCID: PMC9980742 DOI: 10.1371/journal.pone.0272750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
The pollution of soil with heavy metals is an increasingly serious worldwide problem, and cadmium (Cd) has attracted attention because of its high toxicity to almost all plants. Since castor tolerates the accumulation of heavy metals, it has the potential for heavy metal soil remediation. We studied the mechanism of the tolerance of castor to Cd stress treatments at three doses: 300 mg/L, 700 mg/L, and 1,000 mg/L. This research provides new ideas for revealing the defense and detoxification mechanisms of Cd-stressed castor. By combining the results of physiology, differential proteomics and comparative metabolomics, we conducted a comprehensive analysis of the networks that regulate the response of castor to Cd stress. The physiological results mainly emphasize the super-sensitive responses of castor plant roots to Cd stress and the effects of Cd stress on plants' antioxidant system, ATP synthesis and ion homeostasis. We confirmed these results at the protein and metabolite levels. In addition, proteomics and metabolomics indicated that under Cd stress, the expressions of proteins involved in defense and detoxification, energy metabolism and other metabolites such as organic acids and flavonoids were significantly up-regulated. At the same time, proteomics and metabolomics also show that castor plants mainly block the root system's absorption of Cd2+ by enhancing the strength of the cell wall, and inducing programmed cell death in response to the three different doses of Cd stress. In addition, the plasma membrane ATPase encoding gene (RcHA4), which was significantly upregulated in our differential proteomics and RT-qPCR studies, was transgenically overexpressed in wild type Arabidopsis thaliana for functional verification. The results indicated that this gene plays an important role in improving plant Cd tolerance.
Collapse
Affiliation(s)
- Zhao Huibo
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Zhao Yong
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, 137099, China
| | - Luo Rui
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Li Guorui
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Di Jianjun
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Wen Qi
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Liang Xiaotian
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Yin Mingda
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Wen Yanpeng
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Wang Zhiyan
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Huang Fenglan
- School of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, Inner Mongolia, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, Inner Mongolia, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, Inner Mongolia, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, Inner Mongolia, China
- * E-mail:
| |
Collapse
|
4
|
Alp K, Terzi H, Yildiz M. Proteomic and physiological analyses to elucidate nitric oxide-mediated adaptive responses of barley under cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1467-1476. [PMID: 36051236 PMCID: PMC9424405 DOI: 10.1007/s12298-022-01214-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Nitric oxide (NO) is known to induce plant resistance for several environmental stresses. The protective roles of NO in cadmium (Cd) toxicity have been well documented for various plant species; nevertheless, little information is available about its molecular regulation in improving Cd tolerance of barley plants. Therefore, we combined a comparative proteomics with physiological analyses to evaluate the potential roles of NO in alleviating Cd stress (50 μM) in barley (Hordeum vulgare L.) seedlings. Exogenous application of NO donor sodium nitroprusside (SNP, 100 μM) decreased the Cd-mediated seedling growth inhibition. This observation was supported by the reduction of lipid peroxidation as well as the improvement of chlorophyll content and inhibition of hydrogen peroxide accumulation. Activities of the superoxide dismutase and guaiacol peroxidase were reduced following the application of SNP, while ascorbate peroxidase activity was enhanced. In this study, a total of 34 proteins were significantly regulated by NO in the leaves under Cd stress using a gel-based proteomic approach. The proteomic analysis showed that several pathways were noticeably influenced by NO including photosynthesis and carbohydrate metabolism, protein metabolism, energy metabolism, stress defense, and signal transduction. These results provide new evidence that NO induce photosynthesis and energy metabolism which may enhance Cd tolerance in barley seedlings. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01214-3.
Collapse
Affiliation(s)
- Kübra Alp
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mustafa Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|