1
|
Amêndola I, Viegas DDEJ, Freitas ET, Oliveira JRDE, Santos JGD, Oliveira FEDE, Lagareiro Netto AA, Marcucci MC, Oliveira LDDE, Back-Brito GN. Hamamelis virginiana L. extract presents antimicrobial and antibiofilm effects, absence of cytotoxicity, anti-inflammatory action, and potential to fight infections through the nitric oxide production by macrophages. AN ACAD BRAS CIENC 2024; 96:e20200031. [PMID: 38359287 DOI: 10.1590/0001-3765202320200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/15/2020] [Indexed: 02/17/2024] Open
Abstract
The potential of H. virginiana L. was evaluated against Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. guilliermondii, C. krusei, and C. tropicalis) and bacteria (Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans). Effect on murine macrophages (RAW 264.7) was also evaluated with respect to cytotoxicity and production of cytokines (IL-1β and TNF-α) and nitric oxide (NO). The most effective concentrations of the extract were determined by microdilution broth. These concentrations were analyzed on biofilms, after 5 min or 24 h exposure. Cytotoxicity was performed by MTT assay and quantification of cytokines and NO by ELISA and Griess reagent, respectively. The extract acted against the planktonic forms and provided significant reductions of all the microbial biofilms; besides, showed no cytotoxic effect, except at 100 mg/mL, after 24 h exposure. There was cytokine production; however, a modulatory effect was observed in groups exposed to lipopolysaccharide (LPS) from E. coli. NO production was similar or higher than the control group. Thus, H. virginiana L. extract showed antimicrobial and antibiofilm effects; absence of cytotoxicity for RAW 264.7; anti-inflammatory action; and potential to fight infections through the NO production.
Collapse
Affiliation(s)
- Isabela Amêndola
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Daiane DE J Viegas
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Eduardo T Freitas
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Jonatas R DE Oliveira
- Universidade Anhembi Morumbi, Escola de Medicina, Av. Deputado Benedito Matarazzo, 4050, Jardim Aquarius, 12230-002 São José dos Campos, SP, Brazil
| | - Juliana G Dos Santos
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Felipe E DE Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | | | - Maria C Marcucci
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Luciane D DE Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Graziella N Back-Brito
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| |
Collapse
|
2
|
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Vallejo-Pascual ME, Adanero-Jorge F, García-Fernández C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023; 12:4337. [PMID: 38231851 DOI: 10.3390/foods12234337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The antioxidant, anti-inflammatory, and antimicrobial characteristics of propolis, a bioactive compound collected from hives, have prompted its use in the food sector in recent times. This study investigated the physicochemical characteristics, phenolic profile, and antioxidant capacity of 31 propolis extracts collected from Northern Spain. The physicochemical composition (resins, waxes, ashes mineral content, and heavy metals) was within the allowable regulatory limits. The analysis of bioactive compounds enabled the identification of 51 constituents: flavonoids (apigenin, catechin, chrysin, quercetin, and pinocembrin) and phenolic acids (caffeic, ferulic, and coumaric). The mean value of total polyphenols was 42.72 ± 13.19 Pinocembrin-Galangin Equivalents/100 g, whereas a range between 1.64 ± 0.04 and 4.95 ± 0.36 Quercetin Equivalents (QE) g/100 g was found for total flavonoids content. The determination of bioactivities revealed significant antioxidant capacity using DPPH (1114.28 ± 10.39 µM Trolox Equivalents and 3487.61 ± 318.66 µM Vitamin C Equivalents). Resin content in propolis samples was positively and significantly correlated with both polyphenols (rho = 0.365; p = 0.043) and flavonoid composition (rho = 0.615; p = 0.000) as well as the antioxidant capacity TEAC DPPH (rho = 0.415; p = 0.020). A multiple regression analysis modeled the correlation between resin composition, flavonoids, and TEAC DPPH values, yielding a significant regression equation (R2 = 0.618; F (2,28) = 22.629; p < 0.000; d = 2.299). Therefore, evaluating physicochemical parameters and biological activities provides a promising framework for predicting propolis' quality and antioxidant properties, thus suggesting its potential as a functional and bioactive compound for the food industry.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Ana M González-Paramás
- GIP-USAL, Polyphenol Investigation Group, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María-E Vallejo-Pascual
- Quantitative Methods Area, Economical and Statistical Department, Universidad de León, 24007 León, Spain
| | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| | - Camino García-Fernández
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| |
Collapse
|
3
|
Meccatti VM, Oliveira JRDE, Figueira LW, Lagareiro Netto AA, Zamarioli LS, Marcucci MC, Camargo SEA, Carvalho CAT, Oliveira LDDE. Rosmarinus officinalis L. (rosemary) extract has antibiofilm effect similar to the antifungal nystatin on Candida samples. AN ACAD BRAS CIENC 2021; 93:e20190366. [PMID: 33950151 DOI: 10.1590/0001-3765202120190366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022] Open
Abstract
Candida spp. are naturally opportunistic and can promote infections. These yeasts can form biofilm, after penetration and adhesion to the biotic or abiotic surfaces. Preexisting diseases, treatments with drugs and radiation therapy, medical procedures, and parafunctional habits favor the installation of a fungal infection. Increased resistance to the available antifungals has become a concern. Therefore, alternative methods to control them have been evaluated, including the use of plant substances. In this study, the antibiofilm effect of R. officinalis L. extract was analyzed on C. albicans, C. dubliniensis, C. glabrata, C. krusei, and C. tropicalis. A phytochemical analysis of the extract was performed. Biofilms were formed for 48 h and exposed to the different concentrations of the extract (50, 100, and 200 mg/mL) for 5 min or 24 h. The effect of the plant extract was compared to the antifungal nystatin. Rosmarinus officinalis L. extract was constituted of phenols and flavonoids, highlighting the presence of chlorogenic acid derivatives in its composition. Biofilm reductions were observed after exposure to the plant extract for both periods. The plant extract provided a reduction similar to the antifungal. Thus, R. officinalis L. extract showed antibiofilm effect on Candida spp. comparable to the nystatin.
Collapse
Affiliation(s)
- Vanessa M Meccatti
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Jonatas R DE Oliveira
- Universidade Anhembi Morumbi, Escola de Medicina, Av. Dep. Benedito Matarazzo, 4050, 12230-002 São José dos Campos, SP, Brazil
| | - Leandro W Figueira
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Amandio A Lagareiro Netto
- Universidade Anhanguera, Departamento de Farmácia, Av. Raimundo Pereira de Magalhães, 3305, 05145-200 São Paulo, SP, Brazil
| | - Lucas S Zamarioli
- Universidade Federal de São Paulo(UNIFESP), Instituto de Farmacologia e Biologia Molecular, Departamento de Modo de Ação de Drogas, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | - Maria C Marcucci
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Samira E A Camargo
- University of Florida, College of Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, 32610, USA
| | - Cláudio A T Carvalho
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Odontologia Restauradora, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Luciane D DE Oliveira
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| |
Collapse
|
4
|
Extracts of Poplar Buds ( Populus balsamifera L., Populus nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. PLANTS 2021; 10:plants10050828. [PMID: 33919265 PMCID: PMC8143302 DOI: 10.3390/plants10050828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Balsam poplar and black poplar (Populus balsamifera L. and Populus nigra L.) buds that grow in Lithuania are the primary source of propolis, therefore it is proper to evaluate and compare the composition of these raw plant materials and propolis quantitatively and qualitatively. Propolis and balsamic poplar bud extract are dominated by p-coumaric acid and black poplar-caffeic acid. Antioxidant activity was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power) and CUPRAC (cupric reducing antioxidant capacity) methods and all extracts showed antioxidant activity, and obtained results correlated with the obtained amounts of phenolic compounds and flavonoids in the extracts. Studies of antimicrobial activity have shown that all extracts have a growth inhibitory effect against Staphylococcus aureus and Candida albicans, but the extract of balsam poplar buds showed the most significant effect of such kind. Considering the results of the research, it can be stated that balsam poplar buds cultured in Lithuania are the primary raw material of propolis, which is rich in phenolic compounds with antioxidant properties and is a promising raw material for pharmaceutical purposes.
Collapse
|
5
|
W Figueira L, de Oliveira JR, Netto AA, S Zamarioli LD, Marcucci MC, Camargo SE, de Oliveira LD. Curcuma longa L. helps macrophages to control opportunistic micro-organisms during host-microbe interactions. Future Microbiol 2020; 15:1237-1248. [PMID: 33026878 DOI: 10.2217/fmb-2019-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Plant products have been evaluated to control opportunistic micro-organisms, as well as fortify immune system cells. Thus, Curcuma longa L. (turmeric) extract was evaluated in interactions of murine macrophages (RAW 264.7) with Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans, in order to establish cooperation with defense cells. Materials & methods: Effects of minimal inhibitory concentrations (MIC) of the plant extract were analyzed on phagocytosis, cell viability of RAW 264.7 and production of inflammation-related molecules (IL-1β, TNF-α, IL-10 and NO). Results: The plant extract was cytocompatible and promoted significant reductions of micro-organisms, and synthesis of inflammation-related molecules, during interactions. Conclusion: C. longa L. extract showed significant antimicrobial response and cooperation with macrophages, by fighting bacteria and yeasts during host-microbe interactions.
Collapse
Affiliation(s)
- Leandro W Figueira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil
| | - Jonatas R de Oliveira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil.,School of Medicine, Anhembi Morumbi University, Av. Dep. Benedito Matarazzo, 4050, São José dos Campos, SP 12230-002, Brazil
| | - Amandio Al Netto
- Anhanguera University, Av. Raimundo Pereira de Magalhães, 3305. São Paulo, SP 05145-200, Brazil
| | - Lucas Dos S Zamarioli
- Department of Mode of Drug Action, Federal University of São Paulo (UNIFESP), Institute of Pharmacology & Molecular Biology, Rua Três de Maio, 100 São Paulo, SP 04044-020, Brazil
| | - Maria C Marcucci
- Anhanguera University, Av. Raimundo Pereira de Magalhães, 3305. São Paulo, SP 05145-200, Brazil
| | - Samira Ea Camargo
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Luciane D de Oliveira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil
| |
Collapse
|
6
|
Bankova V, Popova M, Trusheva B. Plant Sources of Propolis: An Update from a Chemist's Point of View. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600101118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The newest developments in research on propolis plant sources are summarized. Special attention is paid to data based on reliable chemical evidence including comparison between propolis samples and plant material, and on well-documented bee behavior. A number of new proved propolis source plants are listed. Hypothetical sources, suggested as a result of comparison of propolis chemical composition and literature data about particular plants are also discussed.
Collapse
Affiliation(s)
- Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl.9, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl.9, 1113 Sofia, Bulgaria
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl.9, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Peter CM, Picoli T, Zani JL, Latosinski GS, Lima MD, Vargas GDÁ, Hübner SDO, Fischer G. Atividade antiviral e virucida de extratos hidroalcoólicos de própolis marrom, verde e de abelhas Jataí (Tetragonisca angustula) frente ao herpersvírus bovino tipo 1 (BoHV-1) e ao vírus da diarreia viral bovina (BVDV). PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000700003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RESUMO: Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. No presente trabalho, descreve-se a ação antiviral e virucida de três extratos hidroalcoólicos de própolis (marrom, verde e de abelhas jataí (Tetragonisca angustula), frente ao Herpesvírus Bovino tipo (BoHV-1) e ao Vírus da Diarreia Viral Bovina (BVDV). Os três extratos hidroalcoólicos foram obtidos de extração etanólica e são oriundos do sul do Brasil. A composição química dos extratos de própolis foi determinada pela cromatografia líquida de alta eficiência acoplada a espectrômetro de massas (UFLC-PDA-ESI-TOF/MS) que identificou e quantificou compostos como: ácido cafeico e ácido p-cumárico, ácido clorogênico, ácido ferúlico, além de flavonoides como a rutina. A toxicidade celular bem como a atividade antiviral dos extratos de própolis em monocamadas de células MDBK (Madin-Darby Bovine Kidney) foi avaliada através de observação microscópica e quantificada pelo teste de MTT (3-(4,5 dimetiltiazol-2yl)-2-5-difenil-2H tetrazolato de bromo). O extrato de própolis de abelhas jataí demonstrou ser menos citotóxico (1,57μg/mL), quando comparado aos extratos verde (0,78μg/mL) e marrom (0,39μg/mL). Quanto a atividade antiviral, a própolis verde demostrou maior eficácia em ambos os tratamentos celulares (pós e pré-exposição) frente ao BoHV-1 em relação aos outros extratos, ou seja, houve maior viabilidade celular quando comparada aos controles de células e vírus. Já a de jataí apresentou atividade frente aos dois vírus (BoHV-1 e BVDV) no método pré-infecção, enquanto a própolis marrom demonstrou ação apenas frente ao BoHV-1 também no método pré-infecção. Para determinação da atividade virucida foram utilizadas diferentes diluições dos vírus, bem como temperaturas e tempos distintos de incubação. A própolis verde a 37°C propiciou a maior redução no título viral (4,33log) em relação a marrom (log = 3,5log) e de jataí (log = 3,24log). No entanto, frente ao BVDV a própolis jataí apresentou os melhores resultados em ambas as temperaturas (22oC e 37oC). Portanto, os extratos avaliados apresentaram atividade antiviral e virucida frente ao BoHV-1 e BVDV, o que os torna alvo para o desenvolvimento de novos biofármacos como alternativa ao uso de antivirais comerciais em Medicina Veterinária.
Collapse
|
8
|
Simone-Finstrom M, Borba RS, Wilson M, Spivak M. Propolis Counteracts Some Threats to Honey Bee Health. INSECTS 2017; 8:E46. [PMID: 28468244 PMCID: PMC5492060 DOI: 10.3390/insects8020046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
Honey bees (Apis mellifera) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees' natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis. We also review the limited research on the effects of propolis against other pathogens, parasites and pests (Nosema, viruses, Varroa destructor, and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency.
Collapse
Affiliation(s)
- Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA.
| | - Renata S Borba
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB T0H 0C0, Canada.
| | - Michael Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55018, USA.
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
9
|
Simone-Finstrom M. Social Immunity and the Superorganism: Behavioral Defenses Protecting Honey Bee Colonies from Pathogens and Parasites. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/0005772x.2017.1307800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Czyżewska U, Konończuk J, Teul J, Drągowski P, Pawlak-Morka R, Surażyński A, Miltyk W. Verification of Chemical Composition of Commercially Available Propolis Extracts by Gas Chromatography–Mass Spectrometry Analysis. J Med Food 2015; 18:584-91. [DOI: 10.1089/jmf.2014.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Urszula Czyżewska
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| | - Joanna Konończuk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| | - Joanna Teul
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| | - Paweł Drągowski
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| | | | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Kilinskiego, Bialystok, Poland
| |
Collapse
|
11
|
Papachroni D, Graikou K, Kosalec I, Damianakos H, Ingram V, Chinou I. Phytochemical Analysis and Biological Evaluation of Selected African Propolis Samples from Cameroon and Congo. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was the chemical analysis of four selected samples of African propolis (Congo and Cameroon) and their biological evaluation. Twenty-one secondary metabolites belonging to four different chemical groups were isolated from the 70% ethanolic extracts of propolis and their structures were elucidated on the basis of spectral evidence. Three triterpenes and two diprenyl-flavonoids were identified from Congo propolis, which has been investigated for the first time, while thirteen triterpenes, three diprenyl-flavonoids, two monoterpenic alcohols and one fatty acid ester have been identified from Cameroon propolis samples. To our knowledge, the identified diprenyl-flavonoids, as well as five of the isolated and determined triterpenes, are reported for the first time in propolis. Moreover, the total polyphenol content was estimated in all extracts and the antimicrobial activities of all four extracts were studied against six Gram-positive and -negative bacteria and three pathogenic fungi, showing an interesting antibacterial profile.
Collapse
Affiliation(s)
- Danai Papachroni
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Konstantia Graikou
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Harilaos Damianakos
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | | | - Ioanna Chinou
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
12
|
Doğanyiğit Z, Küp FÖ, Silici S, Deniz K, Yakan B, Atayoglu T. Protective effects of propolis on female rats' histopathological, biochemical and genotoxic changes during LPS induced endotoxemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:632-639. [PMID: 23453303 DOI: 10.1016/j.phymed.2013.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/10/2012] [Accepted: 01/26/2013] [Indexed: 06/01/2023]
Abstract
In recent years, propolis has been the object of extensive research for its antibacterial, antioxidant, anti-inflammatory, and antitumoral activities. This study aims to determine the hepatoprotective efficiency of propolis on experimental endotoxemia in rats. In the current study, fifty adult Sprague Dawley rats (weighing 200-300 g) were randomly divided into five groups of ten rats each. Normal saline solution was administered to the rats in the control group, while in the second group LPS (30 mg/kg), in the third group propolis (250 mg/kg), in the fourth group first propolis and then LPS (30 mg/kg), and in the fifth group, first LPS (30 mg/kg) and then propolis were given. Six hours after the application, biochemical (MDA levels) and histopathological changes as well as global DNA methylation analysis in the liver tissue samples were determined, while in the blood tissue samples Genomic Template Stability (GTS, %) was evaluated using RAPD-PCR profiles. The results demonstrated that the administration of propolis could have a protective effect against changes of both genomic stability values and methylation profiles, and it minimized the increase in MDA and tissue damage caused by LPS. In conclusion, the application of propolis prior to LPS-induced endotoxemia has shown to reduce hepatic damage.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Erciyes University, Medical Faculty, Department of Histology and Embryology, Kayseri, Turkey
| | | | | | | | | | | |
Collapse
|
13
|
Papotti G, Bertelli D, Bortolotti L, Plessi M. Chemical and functional characterization of Italian propolis obtained by different harvesting methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2852-2862. [PMID: 22360702 DOI: 10.1021/jf205179d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The composition and antioxidant activity of Italian poplar propolis obtained using three harvesting methods and extracted with different solvents were evaluated. Waxes, balsams, and resins contents were determined. Flavones and flavonols, flavanones and dihydroflavonols, and total phenolics were also analyzed. To characterize the phenolic composition, the presence of 15 compounds was verified through HPLC-MS/MS. The antioxidant activity was evaluated through 1,1-diphenyl-2-picrylhydrazyl radical and reducing power assays. The ability of propolis to inhibit lipid oxidation was monitored by analyzing hydroperoxide and TBARS formation in lipids incorporated into an oil-in-water (O/W) emulsion. Acetone shows the highest extraction capacity. Wedge propolis has the highest concentration of active phenolic compounds (TP = 359.1 ± 16.3 GAEs/g; TFF = 5.83 ± 0.42%; TFD = 7.34 ± 1.8%) and seems to be the most promising for obtaining high-value propolis more suitable to prepare high-quality dietary supplements (TBARS = 0.012 ± 0.009 mmol std/g; RP = 0.77 ± 0.07 TEs/g).
Collapse
Affiliation(s)
- Giulia Papotti
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | | | | | | |
Collapse
|
14
|
Sawaya ACHF, Barbosa da Silva Cunha I, Marcucci MC. Analytical methods applied to diverse types of Brazilian propolis. Chem Cent J 2011; 5:27. [PMID: 21631940 PMCID: PMC3123264 DOI: 10.1186/1752-153x-5-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/01/2011] [Indexed: 01/11/2023] Open
Abstract
Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting.Propolis has been used as a popular remedy for several centuries for a wide array of ailments. Its antimicrobial properties, present in propolis from different origins, have been extensively studied. But, more recently, anti-parasitic, anti-viral/immune stimulating, healing, anti-tumor, anti-inflammatory, antioxidant and analgesic activities of diverse types of Brazilian propolis have been evaluated. The most common methods employed and overviews of their relative results are presented.
Collapse
|
15
|
Matrix solid-phase dispersion extraction of organophosphorus pesticides from propolis extracts and recovery evaluation by GC/MS. Anal Bioanal Chem 2011; 400:885-91. [PMID: 21380749 DOI: 10.1007/s00216-011-4828-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
Five organophosphorus pesticides (dichlorvos, diazinon, malathion, methyl parathion and coumaphos) were extracted from propolis by matrix solid-phase dispersion (MSPD) extraction using octadecylsilica (C18, 1.0 g) as dispersant material. The kind of solvent elution (acetonitrile or ethyl acetate), volume (8 mL and 15 mL), and adsorbent used to clean-up the extracts (graphitized carbon, florisil™ and silica) were optimized using fortified propolis samples (5.0 μg g(-1)). Recovery was determined by gas chromatography with mass spectrometric detection in selected ion monitoring mode (GC/MS-SIM) and statistical analysis was done to determine better extraction conditions. Relatively high recovery and lower relative standard deviation values (3.1-14.6%) were obtained when analytes were eluted with ethyl acetate from the MSPD column. Diazinon, malathion, methyl parathion, and coumaphos show recoveries of 72.7%, 84.6%, 62.6%, and 78.3%, respectively. In contrast, the recovery for dichlorvos was 53.8%. Additional adsorbents tested for clean-up and increase in solvent elution did not affect recoveries positively and caused a high background in chromatograms. Thus, final conditions were 1 mL of sample, 1 g C18 and 8 mL of ethyl acetate.
Collapse
|
16
|
Popova M, Chen CN, Chen PY, Huang CY, Bankova V. A validated spectrophotometric method for quantification of prenylated flavanones in pacific propolis from Taiwan. PHYTOCHEMICAL ANALYSIS : PCA 2010; 21:186-91. [PMID: 19856482 DOI: 10.1002/pca.1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Because of its chemical diversity, the only way to standardise propolis is to specify multiple standards for different propolis types according to the corresponding chemical profile. So far, this has been done only for European propolis. OBJECTIVE To develop a rapid low-cost spectrophotometric procedure for quantification of bioactive prenylated flavanones in Taiwanese propolis. METHODOLOGY The proposed method quantifies the total flavanones on the basis of their absorption as coloured phenylhydrazones formed by interaction with 2,4-dinitrophenylhydrazine. The procedure was validated through model mixture of compounds representing the composition of Taiwanese propolis according to previous studies. The major flavanones of the propolis samples (propolins C, D, F and G) were quantified by HPLC. Antiradical activity against DPPH was also measured. The DNP (dinitrophenylhydrazine) spectrophotometric method is applied for the first time for quantification of prenylated flavanones. RESULTS Spectophotometric procedure applicable to new type propolis (Macaranga type) was developed with recovery between 105 and 110% at the concentration range of 0.573-1.791 mg/mL. Six propolis samples were analysed by spectrophotometry using the procedure developed and validated, and by HPLC as the results demonstrated satisfactory agreement. Neither the spectrophotometric data nor the values measured by HPLC showed significant correlation with the antiradical activity against DPPH. CONCLUSION The proposed spectrophotometric procedure is useful for routine analyses of Macaranga-type propolis, because of its simplicity, repeatability and acceptable accuracy. Its application to a number of commercial samples could be used as a basis for standardisation and quality control of Pacific propolis.
Collapse
Affiliation(s)
- Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
17
|
Nadia BH, Wided K, Kheira B, Hassiba R, Lamia B, Rhouati S, Alyane M, Zellagui A, Lahouel M. Disruption of mitochondrial membrane potential by ferulenol and restoration by propolis extract: antiapoptotic role of propolis. ACTA BIOLOGICA HUNGARICA 2009; 60:385-98. [PMID: 20015830 DOI: 10.1556/abiol.60.2009.4.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper reports an investigation of the ability of propolis extract (a resinous substance collected by honeybees from various plant sources) to restore the collapse of mitochondrial membrane potential induced by ferulenol, a sesquiterpene prenylated coumarin derivative isolated from the plant Ferula vesceritensis . We show that ferulenol was able to induce the permeability transition pore (PTP) opening. This effect is caused by the interaction of the compound with the mitochondrial respiratory chain, more particularly by the fall of membrane potential and the inhibition of complex II. We have previously demonstrated that this inhibition results from a limitation of electron transfers involved in the respiratory chain and initiated by the reduction of ubiquinone. We hypothesized that the protective effect of propolis could be due to a direct action on mitochondrial functions. So we have investigated in vitro the mitochondrial effects of Algerian propolis using rat liver mitochondria, by analysing their effects on membrane potential, mitochondrial respiration and mitochondrial swelling. We show that propolis extract was able to restore the fall of mitochondrial membrane potential. Taken together these data reveal that propolis extract may be an interesting inhibitor of PTP and provide an additional mechanism by which the natural product propolis extract may restore the mitochondrial membrane potential and to prevent apoptotic process.
Collapse
Affiliation(s)
- Boussenane H Nadia
- Université de Jijel Département de Biologie Moléculaire et Cellulaire, Laboratoire de Toxicologie Moléculaire 18000 Jijel Algérie
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Biscaia D, Ferreira SR. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J Supercrit Fluids 2009. [DOI: 10.1016/j.supflu.2009.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Isidorov VA, Brzozowska M, Czyzewska U, Glinka L. Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. J Chromatogr A 2008; 1198-1199:196-201. [PMID: 18533164 DOI: 10.1016/j.chroma.2008.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 11/24/2022]
Abstract
20 phenylpropenoid glycerides were synthesized by esterification of glycerol by p-coumaric, ferulic and caffeic acids. Main diagnostic ions in mass spectra and linear temperature programmed retention indices (LTPRI) of trimethylsilyl derivatives of these compounds were determined by GC/MS analysis. On the basis of these analytical parameters 39 in various degree substituted phenylpropenoid glycerides were for the first time identified in diethyl ether and ethyl acetate extracts from aspen buds.
Collapse
Affiliation(s)
- V A Isidorov
- Institute of Chemistry, Białystok University, 15-399 Białystok, Poland.
| | | | | | | |
Collapse
|
20
|
Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008; 95:781-6. [DOI: 10.1007/s00114-008-0383-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/02/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
21
|
Composition and in vitro antimicrobial activity of Populus buds and poplar-type propolis. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9566-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Cvek J, Medić-Sarić M, Jasprica I, Zubcić S, Vitali D, Mornar A, Vedrina-Dragojević I, Tomić S. Optimisation of an extraction procedure and chemical characterisation of Croatian propolis tinctures. PHYTOCHEMICAL ANALYSIS : PCA 2007; 18:451-9. [PMID: 17624905 DOI: 10.1002/pca.1001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Three spectrophotometric methods for the quantitative determination of different flavonoid groups and total phenolics in Croatian propolis samples were optimised and validated. The assay based on the formation of aluminium chloride complex (with galangin as a standard) was applied to the quantification of flavones and flavonols, while the 2,4-dinitrophenylhydrazine method (with pinocembrine as a reference) was used for the quantification of flavanones. Total phenolic content was measured by the Folin-Ciocalteau method using reference solution of caffeic acid:galangin:pinocembrine (1:1:1). Through analytical validation, the most suitable extraction conditions (with respect to time, temperature and concentration of extraction solvent) were determined, and final conditions for the extraction were established (80% ethanol, 1 h at the room temperature). The appropriate ratio between the mass of raw propolis and the extraction solvent volume was also established. By the application of the optimised method of extraction, 10 propolis tinctures were prepared and subjected to the analysis of general pharmacopoeial parameters, which are fundamental for the creation of quality specification (relative density, dry residue of extract, content of ethanol, methanol and 2-propanol). Additionally, the content of waxes as the main inactive constituents was determined in order to observe the level of their migration from crude propolis to the prepared tinctures.
Collapse
Affiliation(s)
- J Cvek
- Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Silici S, Ünlü M, Vardar-Ünlü G. Antibacterial activity and phytochemical evidence for the plant origin of Turkish propolis from different regions. World J Microbiol Biotechnol 2007; 23:1797-803. [DOI: 10.1007/s11274-007-9430-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
|
24
|
Tosi EA, Ré E, Ortega ME, Cazzoli AF. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem 2007. [DOI: 10.1016/j.foodchem.2007.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Silici S, Koc AN. Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Lett Appl Microbiol 2006; 43:318-24. [PMID: 16910939 DOI: 10.1111/j.1472-765x.2006.01949.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To test a total of 15 strains belonging to four species of yeasts by different in vitro methods against propolis and itraconazole (ITC). METHODS AND RESULTS Three methods were compared for susceptibility testing of yeast isolates to propolis: disc diffusion method, agar dilution method and National Committee for Clinical Laboratory Standards (NCCLS, M27A) broth microdilution method. ITC was selected as the antifungal agent for comparison study. Using the broth microdilution method, the geometric mean for MIC (microg ml(-1)) with regard to all isolates was < or =0.06 for propolis and < or =0.35 for ITC. The broth microdilution and the agar dilution methods were in good agreement (75%) for propolis against yeasts isolated from patients with superficial mycoses. Using the diffusion method, all strains showed a broad zone of inhibition at the first available reading time (24 or 48 h). An increase of MIC values was accompanied by a decrease of growth inhibition zone diameter. A favourable correlation was found between MIC and inhibition zone around the disc for propolis sample and the correlation coefficient was: r = -0.626 (P < 0.01). CONCLUSIONS This study suggests the potential value of the agar dilution and disc diffusion method as a convenient alternative method for testing of yeasts to propolis. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that propolis and ITC were very active against yeasts from patients with superficial mycoses. The other prominent finding in this study is that RPMI 1640 with L-glutamine was the available broth for the in vitro susceptibility testing of yeasts.
Collapse
Affiliation(s)
- S Silici
- Department of Animal Science, S. Cikrikcioglu Vocational College, Erciyes University, Kayseri, Turkey.
| | | |
Collapse
|
26
|
Ozkul Y, Silici S, Eroğlu E. The anticarcinogenic effect of propolis in human lymphocytes culture. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2005; 12:742-7. [PMID: 16323293 DOI: 10.1016/j.phymed.2004.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The in vitro anticarcinogenic potential of propolis in human lymphocytes was investigated. Blood samples were obtained from ten healthy males, non-smoking volunteers, which were incubated and exposed to increasing concentrations of propolis (0.01, 0.05, 0.1, 0.2, 0.5, 0.7 and 1.0 ml). The mean micronucleus rates were 1.47 +/- 0.38 - 4.02 +/- 0.64. Mitotic index rates were between 19.45 +/- 2.22 and 0.28 +/- 0.33. The differences between the control and exposed cells were statistically significant (p < or = 0.05). We conclude that exposure to different concentrations of propolis cannot produce a carcinogenic effect in peripheral human lymphocytes in vitro. However, increasing micronucleus (MN) rates showed that propolis could have a carcinogenic effect in high concentrations. Also chemical analysis of propolis sample was evaluated by GC/MS. Propolis sample mainly contains flavonoids, fatty and aromatic acids and their esters.
Collapse
Affiliation(s)
- Y Ozkul
- Department of Genetic, Erciyes University Medical Faculty, Kayseri, Turkey
| | | | | |
Collapse
|
27
|
Marquele FD, Di Mambro VM, Georgetti SR, Casagrande R, Valim YML, Fonseca MJV. Assessment of the antioxidant activities of Brazilian extracts of propolis alone and in topical pharmaceutical formulations. J Pharm Biomed Anal 2005; 39:455-62. [PMID: 15908158 DOI: 10.1016/j.jpba.2005.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 11/22/2022]
Abstract
The antioxidant activity of extracts of propolis and of formulations added with these extracts were measured by scavenging different radicals in different systems. For the ethanolic extract of propolis (EEP) and the glycolic extract of propolis (GEP) the IC50 observed were respectively of 0.024 and 0.035 microL/mL in scavenging hydroxyl radical, 0.016 and 0.012 microL/mL in inhibiting lipid peroxidation, 0.22 and 0.24 microL/mL in inhibiting chemiluminescence produced in the H2O2/luminol/horseradish peroxide (HRP) system and about 0.005 microL/mL for both extracts in inhibiting chemiluminescence produced in the xanthine/luminol/xanthine oxidase (XOD) system. The antioxidant activity of extracts of propolis in the formulations was not able to be assessed neither using the deoxyribose assay, since the formulation components interfered in the assay measurements, nor using chemiluminescence in the H2O2/luminol/HRP system, since this method did not show to be sensitive for the extract of propolis evaluation. However, the antioxidant activity of extracts of propolis could be successfully evaluated in the formulations using both lipid peroxidation and chemiluminescence generated in the xanthine/luminol/XOD system inhibitions.
Collapse
Affiliation(s)
- Franciane D Marquele
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto-USP, Av. do Café s/n 14049, 903 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
28
|
Koc AN, Silici S, Ayangil D, Ferahbaş A, Cankaya S. Comparison of in vitro activities of antifungal drugs and ethanolic extract of propolis against Trichophyton rubrum and T. mentagrophytes by using a microdilution assay. Mycoses 2005; 48:205-10. [PMID: 15842339 DOI: 10.1111/j.1439-0507.2005.01128.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The in vitro activities of propolis against 29 strains of dermatophytes were compared with those of terbinafine, itraconazole, ketoconazole, and fluconazole. Minimal inhibitory concentrations (MICs) were determined according to a National Committee for Clinical Laboratory Standards broth microdilution method. Among the systemic antifungals tested, terbinafine was the most potent. Propolis showed important antifungal activity and it merits further investigation as a potentially useful agent for the treatment of dermatophytosis.
Collapse
Affiliation(s)
- A N Koc
- Medical Faculty, Department of Microbiology, Erciyes University, Kayseri, Turkey
| | | | | | | | | |
Collapse
|
29
|
Popova M, Silici S, Kaftanoglu O, Bankova V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2005; 12:221-228. [PMID: 15830845 DOI: 10.1016/j.phymed.2003.09.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antibacterial activity of propolis from different regions of Turkey was studied, accompanied by TLC and GC-MS analyses of its chemical composition and spectrophotometric quantification of the most important active principles. All six samples were active against the bacterial test strains used; however, samples 1 (Yozgat), 2 (Izmir) and 3 (Kayseri) were more active than samples 4 (Adana), 5 (Erzurum) and 6 (Artvin). By TLC comparison all samples were found to contain poplar taxonomic markers but in samples 4 (Adana), 5 (Erzurum) and 6 (Artvin), different substances were observed, which were not present in P. nigra L. bud exudate. The typical poplar samples 1 (Yozgat), 2 (Izmir) and 3 (Kayseri) displayed very similar phenolic and flavonoid content. Samples 4 (Adana), 5 (Erzurum) and 6 (Artvin) were characterized by low phenolic and very low flavonoid concentrations. Qualitative analysis by GC-MS revealed that sample 4 (Adana) contained diterpenic acids and high percent of cinnamyl cinnamate, sample 5 (Erzurum)-significant amounts of hydroxy fatty acids and triterpenic alcohoLs, and sample 6 (Artvin)-phenolic glycerides, characteristic for the bud exudate of Populus euphratica Oliv. The results confirm the importance of phenolics for propolis antibacterial activity, and the significance of P. nigra L. as a propolis source, which provides the hive with the best defense against microorganisms.
Collapse
Affiliation(s)
- M Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
30
|
Silici S, Koç NA, Ayangil D, Cankaya S. Antifungal Activities of Propolis Collected by Different Races of Honeybees Against Yeasts Isolated From Patients With Superficial Mycoses. J Pharmacol Sci 2005; 99:39-44. [PMID: 16141640 DOI: 10.1254/jphs.fpe05002x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Yeasts isolated from patients with superficial mycoses were tested against propolis samples collected from different regions and honeybee races. The minimum inhibitory concentration (MIC) values obtained using the agar dilution methods were compared to the diameters of growth inhibition zones by using the disk diffusion method. The results showed that Candida albicans, C. glabrata, Trichosporon spp., and Rhodotorula sp. were susceptible to low concentrations of propolis, the latter showing a higher susceptibility. Relative to the other propolis tested, the propolis sample collected by Apis mellifera caucasica possessed the highest antifungal activity against all of the superficial mycoses. In contrast, the propolis samples collected by A.m. carnica and A.m. anatolica were the least active samples. Also, the propolis sample from the Adana region is more active than samples from other regions. An increase of MIC values was accompanied by a decrease of growth inhibition zone diameters.
Collapse
Affiliation(s)
- Sibel Silici
- Erciyes University, Safiye Cikrikcioglu Vocational College, Department of Animal Science, Kayseri, Turkey.
| | | | | | | |
Collapse
|
31
|
Medić-Šarić M, Jasprica I, Mornar A, Smolčić-Bubalo A, Golja P. Quantitative analysis of flavonoids and phenolic acids in propolis by two-dimensional thin layer chromatography. JPC-J PLANAR CHROMAT 2004. [DOI: 10.1556/jpc.17.2004.6.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|