1
|
Bukari Z, Emmanuel T, Woodward J, Ferguson R, Ezughara M, Darga N, Lopes BS. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Trop Med Infect Dis 2025; 10:25. [PMID: 39852676 PMCID: PMC11768457 DOI: 10.3390/tropicalmed10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps. Resistance to fluoroquinolones, macrolides, and tetracyclines complicates treatment and increases the risk of severe infections. Drug-resistant Campylobacter is transmitted to humans via contaminated food, water, and direct contact with animals, highlighting its zoonotic potential. Addressing this challenge requires effective interventions. Pre-harvest strategies like biosecurity and immune-based methods reduce bacterial loads on farms, while post-harvest measures, including carcass decontamination and freezing, limit contamination. Emerging approaches, such as bacteriocins and natural antimicrobials, offer chemical-free alternatives. Integrated, multidisciplinary interventions across the food chain are essential to mitigate AMR transmission and enhance food safety. Sustainable agricultural practices, antimicrobial stewardship, and innovative solutions are critical to curbing Campylobacter resistance and protecting global public health. Our review examines the dynamics of antimicrobial resistance in Campylobacter and presents current strategies to mitigate Campylobacter-related AMR, offering valuable insights for antimicrobial control in the poultry industry.
Collapse
Affiliation(s)
- Zubeiru Bukari
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Toyin Emmanuel
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Jude Woodward
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Richard Ferguson
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Martha Ezughara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Nikhil Darga
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
2
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
3
|
Lwin SZC, Maung AT, Linn KZ, Hirono M, Shen C, El-Telbany M, Abdelaziz MNS, Mohammadi TN, Masuda Y, Honjoh KI, Miyamoto T. Characterization of two Campylobacter jejuni phages and evaluation of their antibacterial efficacy with EDTA. Arch Virol 2024; 169:253. [PMID: 39565432 DOI: 10.1007/s00705-024-06169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness worldwide. The application of bacteriophages offers a promising approach to specifically target and reduce C. jejuni contamination in food products. In this study, two C. jejuni phages were characterized, and their ability to inhibit bacterial growth in combination with ethylenediaminetetraacetic acid (EDTA) was investigated. Both phages exhibited tolerance to a wide range of temperature (4-60 °C) and pH (3-9). Phage vB_CjeM-PC10 and vB_CjeM-PC22 were found to have a latent period of 30 min and 20 min and a burst size of 7 and 35 PFU/cell, respectively. Phage vB_CjeM-PC10 has a linear double-stranded DNA (dsDNA) genome of 51,148 bp with 77 ORFs and 29% GC content. Phage vB_CjeM-PC22 has a circular dsDNA genome of 32,543 bp with 56 ORFs and 28% GC content. At 42 °C, the combination of these phages (MOI = 10) and EDTA decreased the count of viable C. jejuni by 5.2 log10 and inhibited the regrowth of resistant cells for 48 h. At 4 °C, phage vB_CjeM-PC10 alone (MOI = 1000) reduced the count of viable C. jejuni by 3 log10 in brain heart infusion (BHI) broth and 2 log10 on chicken skin after incubation for 48 h. Although these phages were effective against C. jejuni, they cannot be utilized directly for food safety applications because they are lysogenic. Nevertheless, these findings expand the genome library of C. jejuni phages and enrich data resources by highlighting potential strategies for controlling C. jejuni infections.
Collapse
Affiliation(s)
- Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Khin Zar Linn
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Miku Hirono
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Cunkuan Shen
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Cui Y, Zhu J, Li P, Guo F, Yang B, Su X, Zhou H, Zhu K, Xu F. Assessment of probiotic Bacillus velezensis supplementation to reduce Campylobacter jejuni colonization in chickens. Poult Sci 2024; 103:103897. [PMID: 38865770 PMCID: PMC11223109 DOI: 10.1016/j.psj.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter jejuni continues to be a major public health issue worldwide. Poultry are recognized as the main reservoir for this foodborne pathogen. Implementing measures to decrease C. jejuni colonization on farms has been regarded as the most effective strategy to control the incidence of campylobacteriosis. The probiotics supplementation has been regarded as an attractive approach against C. jejuni in chickens. Here the inhibitory effects of one probiotic B. velezensis isolate CAU277 against C. jejuni was evaluated in vitro and in vivo. The in vitro antimicrobial activity showed that the supernatant of B. velezensis exhibited the most pronounced inhibitory effects on Campylobacter strains compared to other bacterial species. When co-cultured with B. velezensis, the growth of C. jejuni reduced significantly from 7.46 log10 CFU/mL (24 h) to 1.02 log10 CFU/mL (48 h). Further, the antimicrobial activity of B. velezensis against C. jejuni remained stable under a broad range of temperature, pH, and protease treatments. The in vivo experiments demonstrated that oral administration of B. velezensis significantly reduced the colonization of C. jejuni by 2.0 log10 CFU/g of feces in chicken cecum at 15 d postinoculation. In addition, the supplementary of B. velezensis significantly increased microbial species richness and diversity in chicken ileum, especially enhanced the bacterial population of Alistipes and Christensenellaceae, and decreased the existence of Lachnoclostridium. Our study presents that B. velezensis possesses antimicrobial activities against C. jejuni and promotes microbiota diversity in chicken intestines. These findings indicate a potential to develop an effective probiotic additive to control C. jejuni infection in chicken.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengxiang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
5
|
Sahin O, Pang J, Pavlovic N, Tang Y, Adiguzel MC, Wang C, Zhang Q. A Longitudinal Study on Campylobacter in Conventionally Reared Commercial Broiler Flocks in the United States: Prevalence and Genetic Diversity. Avian Dis 2024; 67:317-325. [PMID: 38300653 DOI: 10.1637/aviandiseases-d-23-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/18/2023] [Indexed: 02/02/2024]
Abstract
Poultry meat contaminated with Campylobacter, a major bacterial cause of foodborne gastroenteritis worldwide, is considered the primary source of human campylobacteriosis. Thus, reduction or elimination of Campylobacter in poultry production will have a significant impact on food safety and public health. Despite the significant progress made over the last decades, many puzzles remain about the epidemiology of Campylobacter on poultry farms, hampering the development of an effective control strategy. This longitudinal study was conducted to determine the prevalence and genetic diversity of Campylobacter in a U.S. commercial broiler production farm system. Cecal contents (15 samples/flock) and boot swabs (3 samples/flock) were collected from approximately 6-wk-old birds from 406 conventional broiler flocks reared in 53 houses on 15 farms (located within a relatively close geographic proximity and managed by the same poultry integrator) for up to eight consecutive production cycles and cultured for Campylobacter. Pulsed-field gel electrophoresis was used to investigate the genetic diversity of the Campylobacter jejuni isolates recovered from the cecal contents. The prevalence of Campylobacter at the farm, house, and flock levels were found to be 93% (14/15), 79% (42/53), and 47% (192/406), respectively. Campylobacter prevalence varied remarkably among different farms and flocks, with some farms or houses testing consistently negative while others being positive all the time over the entire study period. Campylobacter isolation rate changed significantly by sample type (higher by cecal contents vs. boot swabs) and season/production cycle (higher in spring vs. other seasons). The majority (88%; 2364/2675) of the isolates were identified as C. jejuni, and almost all the rest (11%; 303/2675) were Campylobacter coli. Genotyping showed limited diversity within a flock and suggested persistence of some C. jejuni clones over multiple production cycles on the same farm. In conclusion, this study indicated that although Campylobacter prevalence was overall high, there were marked differences in the prevalence among the broiler flocks or farms tested. Future studies aimed at identification of potential risk factors associated with differential Campylobacter status are warranted in order to develop effective on-farm interventions.
Collapse
Affiliation(s)
- Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Nada Pavlovic
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yizhi Tang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Mehmet Cemal Adiguzel
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
6
|
Lamar F, Mucache HN, Mondlane-Milisse A, Jesser KJ, Victor C, Fafetine JM, Saíde JÂO, Fèvre EM, Caruso BA, Freeman MC, Levy K. Quantifying Enteropathogen Contamination along Chicken Value Chains in Maputo, Mozambique: A Multidisciplinary and Mixed-Methods Approach to Identifying High Exposure Settings. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117007. [PMID: 37962439 PMCID: PMC10644898 DOI: 10.1289/ehp11761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Small-scale poultry production is widespread and increasing in low- and middle-income countries (LMICs). Exposure to enteropathogens in poultry feces increases the hazard of human infection and related sequela, and the burden of disease due to enteric infection in children < 5 y in particular is substantial. Yet, the containment and management of poultry-associated fecal waste in informal settings in LMICs is largely unregulated. OBJECTIVES To improve the understanding of potential exposures to enteropathogens carried by chickens, we used mixed methods to map and quantify microbial hazards along production value chains among broiler, layer, and indigenous chickens in Maputo, Mozambique. METHODS To map and describe the value chains, we conducted 77 interviews with key informants working in locations where chickens and related products are sold, raised, and butchered. To quantify microbial hazards, we collected chicken carcasses (n = 75 ) and fecal samples (n = 136 ) from chickens along the value chain and assayed them by qPCR for the chicken-associated bacterial enteropathogens C. jejuni/coli and Salmonella spp. RESULTS We identified critical hazard points along the chicken value chains and identified management and food hygiene practices that contribute to potential exposures to chicken-sourced enteropathogens. We detected C. jejuni/coli in 84 (76%) of fecal samples and 52 (84%) of carcass rinses and Salmonella spp. in 13 (11%) of fecal samples and 16 (21%) of carcass rinses. Prevalence and level of contamination increased as chickens progressed along the value chain, from no contamination of broiler chicken feces at the start of the value chain to 100% contamination of carcasses with C. jejuni/coli at informal markets. Few hazard mitigation strategies were found in the informal sector. DISCUSSION High prevalence and concentration of C. jejuni/coli and Salmonella spp. contamination along chicken value chains suggests a high potential for exposure to these enteropathogens associated with chicken production and marketing processes in the informal sector in our study setting. We identified critical control points, such as the carcass rinse step and storage of raw chicken meat, that could be intervened in to mitigate risk, but regulation and enforcement pose challenges. This mixed-methods approach can also provide a model to understand animal value chains, sanitary risks, and associated exposures in other settings. https://doi.org/10.1289/EHP11761.
Collapse
Affiliation(s)
- Frederica Lamar
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | | | | | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| | - Courtney Victor
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - José M. Fafetine
- Veterinary Faculty, Universidade Eduardo Mondlane, Maputo, Mozambique
- Biotechnology Centre, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- International Livestock Research Institute, Nairobi, Kenya
| | - Bethany A. Caruso
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Matthew C. Freeman
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| |
Collapse
|
7
|
Pang J, Beyi AF, Looft T, Zhang Q, Sahin O. Fecal Microbiota Transplantation Reduces Campylobacter jejuni Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds. Antibiotics (Basel) 2023; 12:1503. [PMID: 37887204 PMCID: PMC10604036 DOI: 10.3390/antibiotics12101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Campylobacter spp., particularly C. jejuni and C. coli, are major food safety concerns, transmitted to humans mainly via contaminated poultry meat. In a previous study, we found that some commercial broiler farms consistently produced Campylobacter-free flocks while others consistently reared Campylobacter-colonized flocks, and significant differences in the gut microbiota compositions between the two types of farm categories were revealed. Therefore, we hypothesized that gut microbiota influences Campylobacter colonization in poultry and that the microbiota from Campylobacter-free flocks may confer colonization resistance to Campylobacter in the chicken intestine. In this study, two fecal microbiota transplantation (FMT) trials were performed to test the hypothesis. Newly hatched chicks were given FMT via oral gavage of the cecal content of Campylobacter-free adult chickens (treatment groups) or PBS (control groups) before the feed consumption. Approximately two weeks after the FMT, the birds were challenged with C. jejuni either by oral gavage (trial 1) or by co-mingling with Campylobacter-colonized seeder birds (trial 2) to evaluate the potential protective effect of the FMT. Cecal contents were collected (3 times, 5 days apart) to determine the Campylobacter colonization levels via culture and microbiota compositions via 16S rRNA gene sequencing. FMT reduced cecal Campylobacter colonization significantly (log10 1.2-2.54 CFU/g) in trial 1 but not in trial 2, although FMT significantly impacted the diversity and compositions of the gut microbiota in both trials. Several genera, such as Butyricimonas, Parabacteroides, Parasutterella, Bilophila, Fournierella, Phascolarctobacterium, and Helicobacter, had increased abundance in the FMT-treated groups in both trials. Furthermore, Campylobacter abundance was found to be negatively correlated with the Escherichia and Ruminococcus_torques_group genera. These findings indicate that even though FMT with adult cecal microbiota can positively affect the subsequent development of the gut microbiota in young broilers, its inhibitory effect on Campylobacter colonization varies and appears to be influenced by the challenge models.
Collapse
Affiliation(s)
- Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Ashenafi Feyisa Beyi
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Torey Looft
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Pang J, Looft T, Zhang Q, Sahin O. Deciphering the Association between Campylobacter Colonization and Microbiota Composition in the Intestine of Commercial Broilers. Microorganisms 2023; 11:1724. [PMID: 37512896 PMCID: PMC10386351 DOI: 10.3390/microorganisms11071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter is a major food safety concern and is transmitted mainly via poultry meat. We previously found that some commercial broiler farms consistently produced Campylobacter-negative flocks while others were consistently Campylobacter-positive for consecutive production cycles although the farms operated under similar management practices. We hypothesized that this difference in Campylobacter colonization might be associated with the gut microbiota composition. To address this, six commercial broiler farms were selected based on their Campylobacter status (three negative and three positive) to evaluate the microbiota differences between each farm category. For each farm on each production cycle (2-3 cycles), 40 ceca collected from five-week-old broilers were processed for microbiota analysis via 16S rRNA gene sequencing. Cecal microbiota species richness, phylogenetic diversity, community structure, and composition of Campylobacter-positive farms were noticeably different from those of Campylobacter-negative farms. Rikenella, Methanocorpusculum, Barnesiella, Parasutterella, and Helicobacter were significantly more abundant among Campylobacter-positive farms. In contrast, Ruminococcaceae, Streptococcus, Escherichia, Eggerthellaceae, Lactobacillus, Monoglobus, and Blausia were more abundant in Campylobacter-negative farms. Eggerthellaceae, Clostridia, Lachnospiraceae, Lactobacillus, Monoglobus, and Parabacteroides were significantly negatively correlated with Campylobacter abundance. These findings suggest that specific members of cecal microbiota may influence Campylobacter colonization in commercial broilers and may be further explored to control Campylobacter in poultry.
Collapse
Affiliation(s)
- Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Torey Looft
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Mousavinafchi SB, Rahimi E, Shakerian A. Campylobacter spp. isolated from poultry in Iran: Antibiotic resistance profiles, virulence genes, and molecular mechanisms. Food Sci Nutr 2023; 11:1142-1153. [PMID: 36789060 PMCID: PMC9922131 DOI: 10.1002/fsn3.3152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Campylobacter spp. genera is one of the most common causes of microbial enteritis worldwide. The objective of this work was to investigate the antimicrobial resistance (AMR) patterns, virulence genes, and genetic variation of thermophilic Campylobacter species collected from chicken meat samples in Iran. A total of 255 meat specimens were taken and transferred to the laboratory. Culture methods were utilized to identify the Campylobacter genus, and PCR and sequencing were performed to confirm the organisms. Antimicrobial susceptibility evaluation was performed using broth microdilution for six antimicrobials [ciprofloxacin (CIP), nalidixic acid (NAL), sitafloxacin (SIT), erythromycin (ERY), tetracycline (TET), and gentamicin (GEN)]. By using PCR, AMR and virulence genes were detected. The detection rate of Campylobacter spp. was 64 (25.09%) out of 255 meat samples, with C. jejuni and C. coli accounting for 41 (64.06%) and 14 (21.87%), respectively. Other Campylobacter isolates accounted for 14.06% of the total (nine samples). The antibiotic susceptibility of all Campylobacter isolates was tested using six antibiotics, and all (100%) were resistant to CIP and NAL. However, TET resistance was observed in 93.9% and 83.3% of C. jejuni and C. coli isolates, respectively. Four (8.2%) C. jejuni isolates were multidrug-resistant (MDR), while none of the C. coli isolates were MDR. Two of the four MDR isolates were resistant to CIP, NAL, TET, and ERY, whereas the other two isolates were resistant to CIP, NAL, TET, and GEN. The values of the Minimum Inhibitory Concentration (MIC) were as follows: CIP, 64-256 μg/ml; NAL, 128-512 μg/ml; TET, 2-1024 μg/ml; SIT, 0.25-1 μg/ml; ERY, 1-32 μg/ml; and GEN, 1-256 μg/ml. recR, dnaJ, cdtC, cdtB, cdtA, flaA, ciaB, cadF, and pidA were discovered in more than 50% of C. jejuni isolates, although wlaN, virbll, cgtB, and ceuE were found in <50%. flaA, cadF, pidA, and ciaB were discovered in more than 50% of the C. coli samples, whereas recR, cdtC, cdtB, cdtA, and cgtB were found in less than half. For C. coli, the percentages for wlaN, dnaJ, virbll, and ceuE were all zero. The results of this study show Campylobacter isolates obtained from poultry have higher resistance to quinolones and TET, pathogenicity potential, and varied genotypes.
Collapse
Affiliation(s)
- Seyedeh Bita Mousavinafchi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| |
Collapse
|
10
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
11
|
Bio-Fermented Malic Acid Facilitates the Production of High-Quality Chicken via Enhancing Muscle Antioxidant Capacity of Broilers. Antioxidants (Basel) 2022; 11:antiox11122309. [PMID: 36552518 PMCID: PMC9774538 DOI: 10.3390/antiox11122309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.
Collapse
|
12
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
13
|
Pham VH, Abbas W, Huang J, Guo F, Zhang K, Kong L, Zhen W, Guo Y, Wang Z. Dietary coated essential oil and organic acid mixture supplementation improves health of broilers infected with avian pathogenic Escherichia coli. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:245-262. [PMID: 36712401 PMCID: PMC9868345 DOI: 10.1016/j.aninu.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a very prevalent disease in poultry farms in China. The exploration of effective non-antibiotic substances is of great significance for the control of APEC infections. This experiment evaluated the efficacy of coated essential oil and organic acid (EOA) supplementation to prevent E. coli O78 infection in broiler chickens. A total of 288 one-day-old male broiler chicks were randomly distributed into 4 groups with 6 replicates per group. Chickens were fed a diet either supplemented with EOA (500 mg/kg feed) or not, and either uninfected or infected with E. coli O78 intratracheally. Results showed that E. coli O78 infection reduced body weight gain, increased mortality and the ratio of feed to gain along with cecal and liver E. coli load, damaged gut mucosa, induced local and systemic inflammation, and altered cecal microbial composition, diversity and function (P < 0.05). Supplemental EOA improved feed conversion efficiency, lowered gross lesion scores and cecal E. coli population, enhanced intestinal goblet cells and serum IgG concentration, and tended to decrease serum IL-12 production (P < 0.05). Essential oil and organic acid addition downregulated IFN-γ mRNA, tended to decrease mucin-2 mRNA levels while upregulating IL-10 mRNA, and tended to increase ZO-1 gene expression in the jejuna of infected birds at 7 d after E. coli O78 challenge (P < 0.05). The 16S rRNA gene sequencing indicated that both EOA addition and E. coli O78 challenge altered the diversity and composition of the cecal microbiota community. Furthermore, infected birds fed EOA showed decreased Bacteroidetes and genus Lactobacillus abundance compared with the infected control. LEfSe analysis showed that Firmicutes, Ruminococcaceae, Clostridiales, Clostridia, Lactobacillus, Lactobacilaceae, and cc-115 were enriched in the non-infected but EOA-treated group (P < 0.05). Collectively, dietary EOA supplementation could mildly alleviate E. coli-induced gut injury and inflammation.
Collapse
Affiliation(s)
- Van Hieu Pham
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China,Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University Agriculture and Forestry, Thai Nguyen, Viet Nam
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyu Huang
- Menon Animal Nutrition Technology Co. Ltd., Shanghai, 201807, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd., Zaozhuang, 277000, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd., Zaozhuang, 277000, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China,Corresponding author.
| |
Collapse
|
14
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
15
|
Urdaneta S, Lorca-Oró C, Dolz R, López-Soria S, Cerdà-Cuéllar M. In a warm climate, ventilation, indoor temperature and outdoor relative humidity have significant effects on Campylobacter spp. colonization in chicken broiler farms which can occur in only 2 days. Food Microbiol 2022; 109:104118. [DOI: 10.1016/j.fm.2022.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
|
16
|
D’Angelantonio D, Scattolini S, Boni A, Neri D, Di Serafino G, Connerton P, Connerton I, Pomilio F, Di Giannatale E, Migliorati G, Aprea G. Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses 2021; 13:v13081428. [PMID: 34452294 PMCID: PMC8402772 DOI: 10.3390/v13081428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Campylobacteriosis is the most commonly reported gastrointestinal disease in humans. Campybacter jejuni is the main cause of the infection, and bacterial colonization in broiler chickens is widespread and difficult to prevent, leading to high risk of occurrence in broiler meat. Phage therapy represents an alternative strategy to control Campylobacter in poultry. The aim of this work was to assess the efficacy of two field-isolated bacteriophages against experimental infections with an anti-microbial resistant (AMR) Campylobacter jejuni strain. A two-step phage application was tested according to a specific combination between chickens’ rearing time and specific multiplicities of infections (MOIs), in order to reduce the Campylobacter load in the animals at slaughtering and to limit the development of phage-resistant mutants. In particular, 75 broilers were divided into three groups (A, B and C), and phages were administered to animals of groups B and C at day 38 (Φ 16-izsam) and 39 (Φ 7-izsam) at MOI 0.1 (group B) and 1 (group C). All broilers were euthanized at day 40, and Campylobacter jejuni was enumerated in cecal contents. Reductions in Campylobacter counts were statistically significant in both group B (1 log10 colony forming units (cfu)/gram (gr)) and group C (2 log10 cfu/gr), compared to the control group. Our findings provide evidence about the ability of phage therapy to reduce the Campylobacter load in poultry before slaughtering, also associated with anti-microbial resistance pattern.
Collapse
Affiliation(s)
- Daniela D’Angelantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Arianna Boni
- Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Diana Neri
- Local Health Unit of Ferrara (USL Ferrara), 44121 Ferrara, Italy;
| | | | - Philippa Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Ian Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
- Correspondence: ; Tel.: +39-0861-33-2-469
| |
Collapse
|
17
|
The changing microbiome of poultry meat; from farm to fridge. Food Microbiol 2021; 99:103823. [PMID: 34119108 DOI: 10.1016/j.fm.2021.103823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Chickens play host to a diverse community of microorganisms which constitute the microflora of the live bird. Factors such as diet, genetics and immune system activity affect this complex population within the bird, while external influences including weather and exposure to other animals alter the development of the microbiome. Bacteria from these settings including Campylobacter and Salmonella play an important role in the quality and safety of end-products from these birds. Further steps, including washing and chilling, within the production cycle aim to control the proliferation of these microbes as well as those which cause product spoilage. These steps impose specific selective pressures upon the microflora of the meat product. Within the next decade, it is forecast that poultry meat, particularly chicken will become the most consumed meat globally. However, as poultry meat is a frequently cited reservoir of zoonotic disease, understanding the development of its microflora is key to controlling the proliferation of important spoilage and pathogenic bacterial groups present on the bird. Whilst several excellent reviews exist detailing the microbiome of poultry during primary production, others focus on fate of important poultry pathogens such as Campylobacter and Salmonella spp. At farm and retail level, and yet others describe the evolution of spoilage microbes during spoilage. This review seeks to provide the poultry industry and research scientists unfamiliar with food technology process with a holistic overview of the key changes to the microflora of broiler chickens at each stage of the production and retail cycle.
Collapse
|
18
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|