1
|
Soares K, Lima M, Saraiva EP, Fidelis SS, Souza R, Morais LKDC, Santos SGCG, Almeida MEV. Effect of temperature on the behavior and parameters of the blood of Japanese quails. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1629090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- K.O. Soares
- Department of Animal Science, Universidade Federal da Paraíba, Areia, Brazil
| | - M.V. Lima
- Department of Animal Science, Universidade Federal do Ceará, Fortaleza, Brazil
| | - E. P. Saraiva
- Department of Animal Science, Universidade Federal da Paraíba, Areia, Brazil
| | - S. S. Fidelis
- Department of Animal Science, Universidade Federal do Ceará, Fortaleza, Brazil
| | - R.G. Souza
- Department of Animal Science, Universidade Federal da Paraíba, Areia, Brazil
| | - L. K. Da C. Morais
- Department of Animal Science, Universidade Federal da Paraíba, Areia, Brazil
| | | | | |
Collapse
|
2
|
Talal S, Cease A, Farington R, Medina HE, Rojas J, Harrison J. High carbohydrate diet ingestion increases post-meal lipid synthesis and drives respiratory exchange ratios above 1. J Exp Biol 2021; 224:jeb.240010. [PMID: 33536308 DOI: 10.1242/jeb.240010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
Locusts have been reported to elevate metabolic rate in response to high carbohydrate diets; this conclusion was based on metabolic rates calculated from CO2 production, a common practice for insects. However, respiratory exchange ratio (RER, CO2 production divided by O2 consumption) can rise above 1 as a result of de novo lipid synthesis, providing an alternative possible explanation of the prior findings. We studied the relationship between macronutrient ingestion, RER and lipid synthesis using South American locusts (Schistocerca cancellata) reared on artificial diets varying in protein:carbohydrate (p:c) ratio. RER increased and rose above 1 as dietary p:c ratio decreased. Lipid accumulation rates were strongly positively correlated with dietary carbohydrate content and ingestion. RERs above 1 were only observed for animals without food in the respirometry chamber, suggesting that hormonal changes after a meal may drive lipid synthesis. Schistocerca cancellata does not elevate metabolic rate on low p:c diets; in fact, the opposite trend was observed.
Collapse
Affiliation(s)
- Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arianne Cease
- School of Life Sciences, School of Sustainability, Arizona State University, Tempe, AZ 85281, USA
| | - Ruth Farington
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Julio Rojas
- Departamento de Campañas Fitosanitarias, Dirección de Protección Vegetal, SENAVE, Paraguay
| | - Jon Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Chen S, Yan C, Xiang H, Xiao J, Liu J, Zhang H, Wang J, Liu H, Zhang X, Ou M, Chen Z, Li W, Turner SP, Zhao X. Transcriptome changes underlie alterations in behavioral traits in different types of chicken. J Anim Sci 2020; 98:5841043. [PMID: 32432320 DOI: 10.1093/jas/skaa167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, artificial selection has contributed greatly to meeting the demands for animal meat, eggs, and milk. However, it has also resulted in changes in behavior, metabolic and digestive function, and alterations in tissue development, including the brain and skeleton. Our study aimed to profile the behavioral traits and transcriptome pattern of chickens (broilers, layers, and dual-purpose breeds) in response to artificial selection. Broilers spent less time gathered as a group in a novel arena (P < 0.01), suggesting reduced fearfulness in these birds. Broilers also showed a greater willingness to approach a model predator during a vigilance test but had a greater behavioral response when first exposed to the vocalization of the predator. Genes found to be upregulated and downregulated in previous work on chickens divergently selected for fear responses also showed consistent differences in expression between breeds in our study and indicated a reduction in fearfulness in broilers. Gene ACTB_G1 (actin) was differentially expressed between breeds and is a candidate gene involved with skeletal muscle growth and disease susceptibility in broilers. Furthermore, breed-specific alterations in the chicken domestic phenotype leading to differences in growth and egg production were associated with behavioral changes, which are probably underpinned by alterations in gene expression, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes pathways. The results highlight the change in behavior and gene expression of the broiler strain relative to the layer and a dual-purpose native breed.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Chao Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Hai Xiang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Hui Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education; Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiben Zhang
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Maojun Ou
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Zelin Chen
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Weibo Li
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Simon P Turner
- Animal and Veterinary Sciences Department, Scotland's Rural College, Edinburgh, UK
| | - Xingbo Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| |
Collapse
|
4
|
|
5
|
Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF, Chao S. Heat stress management in poultry farms: A comprehensive overview. J Therm Biol 2019; 84:414-425. [PMID: 31466781 DOI: 10.1016/j.jtherbio.2019.07.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
Heat stress causes significant economic losses in poultry production, especially in tropical and arid regions of the world. Several studies have investigated the effects of heat stress on the welfare and productivity of poultry. The harmful impacts of heat stress on different poultry types include decreased growth rates, appetites, feed utilization and laying and impaired meat and egg qualities. Recent studies have focused on the deleterious influences of heat stress on bird behaviour, welfare and reproduction. The primary strategies for mitigating heat stress in poultry farms have included feed supplements and management, but the results have not been consistent. This review article discusses the physiological effects of heat stress on poultry health and production and various management and nutritional approaches to cope with it.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Sciences and Technology, Northwest A & F University, Yangling, China; Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Ghulam Abbas
- Department of Animal Production, Riphah College of Veterinary Sciences, Lahore, Pakistan.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh Province, Pakistan
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sun Chao
- College of Animal Sciences and Technology, Northwest A & F University, Yangling, China.
| |
Collapse
|
6
|
Mariz CBL, Silva JHV, Filho JJ, Lima MR, Costa FGP. P and Ca requirements for Japanese quail. J Anim Physiol Anim Nutr (Berl) 2016; 101:389-400. [PMID: 26991051 DOI: 10.1111/jpn.12446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
Abstract
Four experiments were conducted to estimate the phosphorus and calcium requirements for weight maintenance and weight gain in Japanese quails during their growth phase from 16 to 36 days. Japanese quails aged 16 days were used for estimating the phosphorous and calcium requirements for weight maintenance or weight gain, with these quails composing each reference slaughter group and the others distributed in a completely randomized design, housed in cages of galvanized wire (33 × 33 × 16 cm) that were stored in acclimatized chambers with specific environmental temperatures. The light programme used during the 20-day experimental period was 24 h of artificial light. Analysis of the data showed that the prediction equations for estimating the phosphorus and calcium requirements for weight maintenance and weight gain of Japanese quails between 16 and 36 days of age were P (g/quail/day) = P0.75 *(9.3695 + 7.7397*T) + 9.70*WG, in which P is the phosphorus requirement, and Ca (g/quail/day) = P0.75 *(363.99 - 8.0262*T) + 28.15*WG, in which Ca is the calcium requirement, P is BW (kg), T is temperature (°C) and WG (g/quail/day).
Collapse
Affiliation(s)
- C B L Mariz
- Federal University of Paraiba, Areia, Paraiba, Brazil
| | - J H V Silva
- Federal University of Paraiba, Bananeiras, Paraiba, Brazil
| | - J J Filho
- Federal University of Paraiba, Bananeiras, Paraiba, Brazil
| | - M R Lima
- Federal University of Paraiba, Areia, Paraiba, Brazil.,Federal University of the South of Bahia, Teixeira de Freitas, Bahia, Brazil.,Poultry Technology Studies Group, GETA, Federal University of Paraiba, Areia, Brazil
| | - F G P Costa
- Federal University of Paraiba, Areia, Paraiba, Brazil.,Poultry Technology Studies Group, GETA, Federal University of Paraiba, Areia, Brazil
| |
Collapse
|
7
|
Diarra S, Tabuaciri P. Feeding Management of Poultry in High Environmental Temperatures. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.657.661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bertin A, Chanson M, Delaveau J, Mercerand F, Möstl E, Calandreau L, Arnould C, Leterrier C, Collin A. Moderate heat challenge increased yolk steroid hormones and shaped offspring growth and behavior in chickens. PLoS One 2013; 8:e57670. [PMID: 23451257 PMCID: PMC3579796 DOI: 10.1371/journal.pone.0057670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/24/2013] [Indexed: 12/04/2022] Open
Abstract
Background Environmental challenges might affect the maternal organism and indirectly affect the later ontogeny of the progeny. We investigated the cross-generation impact of a moderate heat challenge in chickens. We hypothesized that a warm temperature–within the thermotolerance range- would affect the hormonal environment provided to embryos by mothers, and in turn, affect the morphology and behavioral phenotype of offspring. Methodology/Principal Findings Laying hens were raised under a standard thermal condition at 21°C (controls) or 30°C (experimental) for 5 consecutive weeks. A significant increase was observed in the internal temperature of hens exposed to the warm treatment; however plasma corticosterone levels remained unaffected. The laying rate was not affected, but experimental hens laid lighter eggs than the controls during the treatment. As expected, the maternal thermal environment affected yolk hormone contents. Eggs laid by the experimental hens showed significantly higher concentrations of yolk progesterone, testosterone, and estradiol. All chicks were raised under standard thermal conditions. The quality of hatchlings, growth, feeding behavior and emotional reactivity of chicks were analyzed. Offspring of experimental hens (C30 chicks) were lighter but obtained better morphological quality scores at hatching than the controls (C21 chicks). C30 chicks expressed lesser distress calls when exposed to a novel food. Unlike C21 chicks, C30 chicks expressed no preference for energetic food. Conclusion/Significance Our findings suggest that moderate heat challenge triggers maternal effects and modulate the developmental trajectory of offspring in a way that may be adaptive. This suggests that the impact of heat challenges on captive or wild populations might have a cross-generation effect.
Collapse
Affiliation(s)
- Aline Bertin
- Institut National de la Recherche Agronomique-INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wade CE, Miller MM, Baer LA, Moran MM, Steele MK, Stein TP. Body mass, energy intake, and water consumption of rats and humans during space flight. Nutrition 2002; 18:829-36. [PMID: 12361774 DOI: 10.1016/s0899-9007(02)00914-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.
Collapse
Affiliation(s)
- C E Wade
- Life Sciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA.
| | | | | | | | | | | |
Collapse
|