1
|
Vickery-Howe DM, Drain JR, Clarke AC, Dascombe BJ, Hoolihan B, Middleton KJ. The effect of weapon handling during load carriage across a range of military-relevant walking speeds. ERGONOMICS 2024:1-13. [PMID: 39264271 DOI: 10.1080/00140139.2024.2400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
This study investigated the effects of weapon handling on the physiological responses and walking-gait kinematics during load carriage. Seventeen soldiers completed four twelve-minute bouts of treadmill walking at incremental speeds (3.5, 5.5, 6.5 km.h-1 and self-selected) carrying 23.2-kg of additional load, while either handling a weapon or not handling a weapon. Physiological, perceptual and biomechanical outcomes were measured throughout each trial. A weapon-by-speed interaction (p < .05) was observed for hip flexion-extension during loading response and mid-swing. Weapon handling elevated (p < .05) cardiorespiratory responses at 6.5 km.h-1. Main effects (p < .05) of weapon handling were observed for ventilation, oxygen pulse, effort perception, stride length and knee flexion-extension during toe-off. No main effects of weapon handling were observed for any other biomechanical measures. These findings demonstrate that physiological and biomechanical responses to weapon handling are likely walking-speed dependent.Practitioner summary: Weapon handling is an important part of many load-carriage tasks but is rarely investigated. Physiological and biomechanical responses were assessed at incremental speeds during load carriage. Despite similar biomechanics, there was greater physiological demands at faster walking speeds, suggesting an increased contribution from isometric muscle contractions for weapon stabilisation.
Collapse
Affiliation(s)
- Danielle M Vickery-Howe
- Sport Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Jace R Drain
- Human and Decision Sciences Division, Defence Science and Technology Group, Fishermans Bend, Australia
| | - Anthea C Clarke
- Sport Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Ben J Dascombe
- School of Health Sciences, Western Sydney University, Campbelltown, Australia
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah, Australia
| | - Brooke Hoolihan
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah, Australia
| | - Kane J Middleton
- Sport Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| |
Collapse
|
2
|
Looney DP, Lavoie EM, Notley SR, Holden LD, Arcidiacono DM, Potter AW, Silder A, Pasiakos SM, Arellano CJ, Karis AJ, Pryor JL, Santee WR, Friedl KE. Metabolic Costs of Walking with Weighted Vests. Med Sci Sports Exerc 2024; 56:1177-1185. [PMID: 38291646 DOI: 10.1249/mss.0000000000003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
INTRODUCTION The US Army Load Carriage Decision Aid (LCDA) metabolic model is used by militaries across the globe and is intended to predict physiological responses, specifically metabolic costs, in a wide range of dismounted warfighter operations. However, the LCDA has yet to be adapted for vest-borne load carriage, which is commonplace in tactical populations, and differs in energetic costs to backpacking and other forms of load carriage. PURPOSE The purpose of this study is to develop and validate a metabolic model term that accurately estimates the effect of weighted vest loads on standing and walking metabolic rate for military mission-planning and general applications. METHODS Twenty healthy, physically active military-age adults (4 women, 16 men; age, 26 ± 8 yr old; height, 1.74 ± 0.09 m; body mass, 81 ± 16 kg) walked for 6 to 21 min with four levels of weighted vest loading (0 to 66% body mass) at up to 11 treadmill speeds (0.45 to 1.97 m·s -1 ). Using indirect calorimetry measurements, we derived a new model term for estimating metabolic rate when carrying vest-borne loads. Model estimates were evaluated internally by k -fold cross-validation and externally against 12 reference datasets (264 total participants). We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured walking metabolic rate. Estimation accuracy, precision, and level of agreement were also evaluated by the bias, standard deviation of paired differences, and concordance correlation coefficient (CCC), respectively. RESULTS Metabolic rate estimates using the new weighted vest term were statistically equivalent ( P < 0.01) to measured values in the current study (bias, -0.01 ± 0.54 W·kg -1 ; CCC, 0.973) as well as from the 12 reference datasets (bias, -0.16 ± 0.59 W·kg -1 ; CCC, 0.963). CONCLUSIONS The updated LCDA metabolic model calculates accurate predictions of metabolic rate when carrying heavy backpack and vest-borne loads. Tactical populations and recreational athletes that train with weighted vests can confidently use the simplified LCDA metabolic calculator provided as Supplemental Digital Content to estimate metabolic rates for work/rest guidance, training periodization, and nutritional interventions.
Collapse
Affiliation(s)
- David P Looney
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Elizabeth M Lavoie
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, VIC, AUSTRALIA
| | | | | | - Adam W Potter
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Amy Silder
- Naval Health Research Center, San Diego, CA
| | | | | | - Anthony J Karis
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - William R Santee
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Karl E Friedl
- US Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
3
|
Hosseini MH, Heidarimoghaddam R, Anbarian M, Ilbeigi S, Tapak L. Modeling heart rate of individual and team manual handling with one hand using generalized additive mixed models. BMC Med Res Methodol 2024; 24:37. [PMID: 38360533 PMCID: PMC10867988 DOI: 10.1186/s12874-024-02169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES Despite the fact that team manual handling is common in different working environments, the previous studies in this regard, particularly those with a physiological approach are quite limited. The present study is an attempt to model the heart rate (HR) of individual and team manual handling with one hand. METHODS Twenty-five young men (aged 21.24±1.42 year) volunteered for this study. The experiments included individual and two-person handling of the load with three different weights with and without height difference. The participants' HR was registered at the end of the route by a chest-strap pulse monitor and a polar watch according to the manufacturer's recommendation. A multivariate Generalized Additive Mixed Model (MGAMM) was used for modeling heart rate based on explanatory variables of workload, carry method, HRrest, body weight, height, knee height, shoulder height, elbow height, and hand height. The significance level of the tests was considered as <0.05. RESULTS Based on the MGAMM, the average HR (bpm) of participants increased as the workload increased (P<0.001). Handling the load with a taller person increased the HR compared to shorter partner (P<0.001). Moreover, the nonlinear associations of the resting HR (P<0.001), body weight (P<0.001), height (P<0.001), and the height of elbow, hand and knee (P<0.001) were statistically significant. The adjusted R2 of the model was 0.89 indicating that about 90 percent of the variations observed in HR could be explained by the variables in the model. This was greater than the model considering only linear effects (R2 =0.60). CONCLUSION The model obtained in this study can predict the heart rate of individual and team one-handed handling with high validity. The MGAMM can be used in modeling heart rate in manual handling.
Collapse
Affiliation(s)
- Mohammad Hamed Hosseini
- Department of Ergonomics, School of Public Health, Research Centre for Health Sciences Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rashid Heidarimoghaddam
- Department of Ergonomics, School of Public Health, Research Centre for Health Sciences Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Anbarian
- Department of Sports Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamadan, Iran
| | - Saeed Ilbeigi
- Sports Biomechanics, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Vickery-Howe DM, Bonanno DR, Dascombe BJ, Drain JR, Clarke AC, Hoolihan B, Willy RW, Middleton KJ. Physiological, perceptual, and biomechanical differences between treadmill and overground walking in healthy adults: A systematic review and meta-analysis. J Sports Sci 2023; 41:2088-2120. [PMID: 38350022 DOI: 10.1080/02640414.2024.2312481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
This systematic review and meta-analysis aims to compare physiological, perceptual and biomechanical outcomes between walking on a treadmill and overground surfaces. Five databases (CINAHL, EMBASE, MEDLINE, SPORTDiscus, Web of Science) were searched until September 2022. Included studies needed to be a crossover design comparing biomechanical, physiological, or perceptual measures between motorised-treadmill and overground walking in healthy adults (18-65 years) walking at the same speed (<5% difference). The quality of studies were assessed using a modified Downs and Black Quality Index. Meta-analyses were performed to determine standardised mean difference ± 95% confidence intervals for all main outcome measures. Fifty-five studies were included with 1,005 participants. Relative oxygen consumption (standardised mean difference [95% confidence interval] 0.38 [0.14,0.63]) and cadence (0.22 [0.06,0.38]) are higher during treadmill walking. Whereas stride length (-0.36 [-0.62,-0.11]) and step length (-0.52 [-0.98,-0.06]) are lower during treadmill walking. Most kinetic variables are different between surfaces. The oxygen consumption, spatiotemporal and kinetic differences on the treadmill may be an attempt to increase stability due to the lack of control, discomfort and familiarity on the treadmill. Treadmill construction including surface stiffness and motor power are likely additional constraints that need to be considered and require investigation. This research was supported by an Australian Government Research Training Program (RTP) scholarship. Protocol registration is CRD42020208002 (PROSPERO International Prospective Register of Systematic Reviews) in October 2020.
Collapse
Affiliation(s)
- D M Vickery-Howe
- Sports, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - D R Bonanno
- Discipline of Podiatry, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - B J Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah, Australia
- School of Health Sciences, Western Sydney University, Campbelltown, Australia
| | - J R Drain
- Human and Decision Sciences Division, Defence Science and Technology Group, Fishermans Bend, Australia
| | - A C Clarke
- Sports, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - B Hoolihan
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah, Australia
| | - R W Willy
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, MT, USA
| | - K J Middleton
- Sports, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Künzler M, Herger S, De Pieri E, Egloff C, Mündermann A, Nüesch C. Effect of load carriage on joint kinematics, vertical ground reaction force and muscle activity: Treadmill versus overground walking. Gait Posture 2023; 104:1-8. [PMID: 37263066 DOI: 10.1016/j.gaitpost.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Previous studies have investigated the effect of either different load or different surface conditions, such as overground or treadmill walking, on human biomechanics. However, studies combining these two aspects are scarce. RESEARCH QUESTION The purpose of this study was to quantify the difference in spatiotemporal parameters, lower extremity joint kinematics, vertical ground reaction forces (vGRF) and muscle activity between normal bodyweight (100 %BW) and 20 % increased bodyweight (120 %BW) during overground and treadmill walking. METHODS Ten healthy young adults walked overground at self-selected speed and on an instrumented treadmill set to the overground speed. Spatiotemporal parameters, 3-dimensional lower extremity kinematics, vGRF and muscle activity were measured and compared between conditions. RESULTS The stance phase was longer for 120 %BW than 100 %BW in both overground and treadmill walking. Further, the stance phase was longer and cadence higher in treadmill than overground walking for both load conditions. Knee flexion angles were more than 3° greater in the second half of swing in treadmill than in overground walking. The vGRF was higher for 120 %BW compared to 100 %BW on both surfaces (treadmill, first peak: +18.6 %BW; second peak: +13.5 %BW; overground, first peak: +22.2 %BW; second peak: +19.8 %BW). Differences between conditions greater than 20 % were observed in short periods during the gait cycle for vastus medialis, vastus lateralis and semitendinosus. SIGNIFICANCE Results regarding the effects of carrying additional load using a weight vest on joint kinematics during treadmill walking may be translated to overground walking but some changes in muscle activation can be expected.
Collapse
Affiliation(s)
- Marina Künzler
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Simon Herger
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Enrico De Pieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland
| | - Christian Egloff
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Corina Nüesch
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Prado-Nóvoa O, Rodríguez J, Zorrilla-Revilla G, Vidal-Cordasco M, Mateos A. Evaluating the human capacity of carrying loads without costs: A scoping review of the Free-Ride phenomenon. Am J Hum Biol 2022; 34:e23794. [PMID: 36056617 DOI: 10.1002/ajhb.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Several researchers have obtained discordant results testing the human capability to transport loads without added locomotion costs. Carrying loads has an extended relevance to human ecology, thus a review of the Free-Ride phenomenon detection according to the existing literature is needed. METHOD A search was made in November 2021 in SCOPUS, Google Scholar, and Web of Science to identify studies comparing the energy expenditure of loaded and unloaded locomotion. Descriptive percentages were calculated with the data obtained from each study, and a Chi-squared (χ2 ) independency test and a contingency table were applied to observe the relationship between sample characteristics, experimental procedures, and the detection of the Free-Ride. RESULTS A total of 45 studies met the inclusion criteria. Eighty two percent do not detect the Free-Ride phenomenon. The general detection is independent of sex, experience, load position, load size, and speed (p value >.05) although the papers detecting the Free-Ride have some common characteristics. CONCLUSION The literature does not support a Free-Ride capacity, but future research testing this phenomenon should consider the load size, the load position, the level of expertise, or the speed. As the Free-Ride is not generalizable, it can be hypothesized that other mechanisms may have emerged during human evolution to buffer the energetic demands of load carrying.
Collapse
Affiliation(s)
- Olalla Prado-Nóvoa
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Jesús Rodríguez
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | | | - Marco Vidal-Cordasco
- EvoAdapta Research group, Department of Historical Sciences, University of Cantabria, Santander, Spain
| | - Ana Mateos
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| |
Collapse
|
7
|
Middleton K, Vickery-Howe D, Dascombe B, Clarke A, Wheat J, McClelland J, Drain J. Mechanical Differences between Men and Women during Overground Load Carriage at Self-Selected Walking Speeds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3927. [PMID: 35409609 PMCID: PMC8997774 DOI: 10.3390/ijerph19073927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Few studies have directly compared physical responses to relative loading strategies between men and women during overground walking. This study aimed to compare gait mechanics of men and women during overground load carriage. A total of 30 participants (15 male, 15 female) completed three 10-min walking trials while carrying external loads of 0%, 20% and 40% of body mass at a self-selected walking speed. Lower-body motion and ground reaction forces were collected using a three-dimensional motion capture system and force plates, respectively. Female participants walked with a higher cadence (p = 0.002) and spent less absolute time in stance (p = 0.010) but had similar self-selected walking speed (p = 0.750), which was likely due to the female participants being shorter than the male participants. Except for ankle plantarflexion moments, there were no sex differences in spatiotemporal, kinematic, or kinetic variables (p > 0.05). Increasing loads resulted in significantly lower self-selected walking speed, greater stance time, and changes in all joint kinematics and kinetics across the gait cycle (p < 0.05). In conclusion, there were few differences between sexes in walking mechanics during overground load carriage. The changes identified in this study may inform training programs to increase load carriage performance.
Collapse
Affiliation(s)
- Kane Middleton
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Danielle Vickery-Howe
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Ben Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah 2258, Australia;
| | - Anthea Clarke
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Jon Wheat
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK;
| | - Jodie McClelland
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia;
| | - Jace Drain
- Land Division, Defence Science and Technology Group, Fishermans Bend 3207, Australia;
| |
Collapse
|