1
|
Leng J, Yu X, Wang C, Zhao J, Zhu J, Chen X, Zhu Z, Jiang X, Zhao J, Feng C, Yang Q, Li J, Jiang L, Xu F, Zhang Y. Functional connectivity of EEG motor rhythms after spinal cord injury. Cogn Neurodyn 2024; 18:3015-3029. [PMID: 39555294 PMCID: PMC11564577 DOI: 10.1007/s11571-024-10136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 11/19/2024] Open
Abstract
Spinal cord injury (SCI), which is the injury of the spinal cord site resulting in motor dysfunction, has prompted the use of motor imagery (MI)-based brain computer interface (BCI) systems for motor function reconstruction. However, analyzing electroencephalogram signals and brain function mechanisms for SCI patients is challenging. This is due to their low signal-to-noise ratio and high variability. We propose using the phase locking value (PLV) to construct the brain network in α and β rhythms for both SCI patients and healthy individuals. This approach aims to analyze the changes in brain network connectivity and brain function mechanisms following SCI. The results show that the connection strength of the α rhythm in the healthy control (HC) group is stronger than that in the SCI group, and the connection strength in the β rhythm of the SCI group is stronger than that in the HC group. Moreover, we extract the PLV with common spatial pattern (PLV-CSP) feature from the MI data of the SCI group. The experimental results for 12 SCI patients include that the peak classification accuracy is 100%, and the average accuracy of the ten-fold cross-verification is 95.6%. Our proposed approach can be used as a potential valuable method for SCI pathological studies and MI-based BCI rehabilitation systems.
Collapse
Affiliation(s)
- Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Xin Yu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Chongfeng Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Jinzhao Zhao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Jianqun Zhu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Xinyi Chen
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Zhaoxin Zhu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Xiuquan Jiang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Jiaqi Zhao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Chao Feng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Qingbo Yang
- School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Jianfei Li
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Road West Hi-Tech District, Chengdu, 611731 Sichuan China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, No.2006, Xiyuan Road West Hi-Tech District, Chengdu, 611731 Sichuan China
| | - Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road Changqing District, Jinan, 250353 Shandong China
| | - Yang Zhang
- Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No.42, Wenhuaxi Road Lixia District, Jinan, 250012 Shandong China
| |
Collapse
|
2
|
Kumari R, Gibson H, Jarjees M, Turner C, Purcell M, Vučković A. The predictive value of cortical activity during motor imagery for subacute spinal cord injury-induced neuropathic pain. Clin Neurophysiol 2023; 148:32-43. [PMID: 36796284 DOI: 10.1016/j.clinph.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this study is to explore whether cortical activation and its lateralization during motor imagery (MI) in subacute spinal cord injury (SCI) are indicative of existing or upcoming central neuropathic pain (CNP). METHODS Multichannel electroencephalogram was recorded during MI of both hands in four groups of participants: able-bodied (N = 10), SCI and CNP (N = 11), SCI who developed CNP within 6 months of EEG recording (N = 10), and SCI who remained CNP-free (N = 10). Source activations and its lateralization were derived in four frequency bands in 20 regions spanning sensorimotor cortex and pain matrix. RESULTS Statistically significant differences in lateralization were found in the theta band in premotor cortex (upcoming vs existing CNP, p = 0.036), in the alpha band at the insula (healthy vs upcoming CNP, p = 0.012), and in the higher beta band at the somatosensory association cortex (no CNP vs upcoming CNP, p = 0.042). People with upcoming CNP had stronger activation compared to those with no CNP in the higher beta band for MI of both hands. CONCLUSIONS Activation intensity and lateralization during MI in pain-related areas might hold a predictive value for CNP. SIGNIFICANCE The study increases understanding of the mechanisms underlying transition from asymptomatic to symptomatic early CNP in SCI.
Collapse
Affiliation(s)
- Radha Kumari
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hannah Gibson
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohammed Jarjees
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK; Medical Instrumentation Techniques Engineering Department, Northern Technical University, Mosul 41002, Iraq
| | - Christopher Turner
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mariel Purcell
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aleksandra Vučković
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
3
|
Kumari R, Jarjees M, Susnoschi-Luca I, Purcell M, Vučković A. Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain. SENSORS (BASEL, SWITZERLAND) 2022; 22:6337. [PMID: 36080805 PMCID: PMC9460641 DOI: 10.3390/s22176337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
AIM The aim of this study was to differentiate the effects of spinal cord injury (SCI) and central neuropathic pain (CNP) on effective connectivity during motor imagery of legs, where CNP is typically experienced. METHODS Multichannel EEG was recorded during motor imagery of the legs in 3 groups of people: able-bodied (N = 10), SCI with existing CNP (N = 10), and SCI with no CNP (N = 20). The last group was followed up for 6 months to check for the onset of CNP. Source reconstruction was performed to obtain cortical activity in 17 areas spanning sensorimotor regions and pain matrix. Effective connectivity was calculated using the directed transfer function in 4 frequency bands and compared between groups. RESULTS A total of 50% of the SCI group with no CNP developed CNP later. Statistically significant differences in effective connectivity were found between all groups. The differences between groups were not dependent on the frequency band. Outflows from the supplementary motor area were greater for the able-bodied group while the outflows from the secondary somatosensory cortex were greater for the SCI groups. The group with existing CNP showed the least differences from the able-bodied group, appearing to reverse the effects of SCI. The connectivities involving the pain matrix were different between able-bodied and SCI groups irrespective of CNP status, indicating their involvement in motor networks generally. SIGNIFICANCE The study findings might help guide therapeutic interventions targeted at the brain for CNP alleviation as well as motor recovery post SCI.
Collapse
Affiliation(s)
- Radha Kumari
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohammed Jarjees
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
- Medical Instrumentation Techniques Engineering Department, Northern Technical University, Mosul 41002, Iraq
| | - Ioana Susnoschi-Luca
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mariel Purcell
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aleksandra Vučković
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Simis M, Doruk Camsari D, Imamura M, Filippo TRM, Rubio De Souza D, Battistella LR, Fregni F. Electroencephalography as a Biomarker for Functional Recovery in Spinal Cord Injury Patients. Front Hum Neurosci 2021; 15:548558. [PMID: 33897390 PMCID: PMC8062968 DOI: 10.3389/fnhum.2021.548558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Functional changes after spinal cord injury (SCI) are related to changes in cortical plasticity. These changes can be measured with electroencephalography (EEG) and has potential to be used as a clinical biomarker. METHOD In this longitudinal study participants underwent a total of 30 sessions of robotic-assisted gait training (RAGT) over a course of 6 weeks. The duration of each session was 30 min. Resting state EEG was recorded before and after 30-session rehabilitation therapy. To measure gait, we used the Walking Index for Spinal Cord Injury Scale, 10-Meter- Walking Test, Timed-Up-and-Go, and 6-Min-Walking Test. Balance was measured using Berg Balance Scale. RESULTS Fifteen participants with incomplete SCI who had AIS C or D injuries based on American Spinal Cord Injury Association Impairment Scale classification were included in this study. Mean age was 35.7 years (range 17-51) and the mean time since injury was 17.08 (range 4-37) months. All participants showed clinical improvement with the rehabilitation program. EEG data revealed that high beta EEG activity in the central area had a negative correlation with gait (p = 0.049; β coefficient: -0.351; and adj-R 2: 0.23) and balance (p = 0.043; β coefficient: -0.158; and adj-R 2:0.24) measured at baseline, in a way that greater high beta EEG power was related to worse clinical function at baseline. Moreover, improvement in gait and balance had negative correlations with the change in alpha/theta ratio in the parietal area (Gait: p = 0.049; β coefficient: -0.351; adj-R 2: 0.23; Balance: p = 0.043; β coefficient: -0.158; and adj-R 2: 0.24). CONCLUSION In SCI, functional impairment and subsequent improvement following rehabilitation therapy with RAGT correlated with the change in cortical activity measured by EEG. Our results suggest that EEG alpha/theta ratio may be a potential surrogate marker of functional improvement during rehabilitation. Future studies are necessary to improve and validate these findings as a neurophysiological biomarker for SCI rehabilitation.
Collapse
Affiliation(s)
- Marcel Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Marta Imamura
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Daniel Rubio De Souza
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Yeh NC, Yang YR, Huang SF, Ku PH, Wang RY. Effects of transcranial direct current stimulation followed by exercise on neuropathic pain in chronic spinal cord injury: a double-blinded randomized controlled pilot trial. Spinal Cord 2020; 59:684-692. [PMID: 33024299 DOI: 10.1038/s41393-020-00560-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
STUDY DESIGN Double-blinded randomized controlled pilot trial. OBJECTIVES The present study aimed to investigate the effects of multiple sessions of tDCS followed by exercise on neuropathic pain and brain activity in individuals with chronic SCI. SETTING Rehabilitation center in Taipei, Taiwan. METHODS Twelve individuals with neuropathic pain after SCI were randomized into the experimental (real) or control (sham) tDCS group. All participants received 12 sessions of real or sham tDCS, and moderate upper body exercises over 4-6 weeks. Pain intensity, characters of pain, self-rating change of pain, brain activity, and quality of life were assessed at pre, posttest, and 4-week follow-up. RESULTS The between-group differences (95% CI) of pain intensity at posttest and at 4-week follow-up were -2.2/10 points (-3.0 to 1.0, p = 0.060) and -2.0/10 points (-5.0 to -0.4, p = 0.035), respectively. The between-group differences of paresthesia/dysesthesia pain character were -2.0/10 points (-3.2 to 1.0, p = 0.053) at posttest and -2.3/10 points (-5.0 to 2.5, p = 0.054) at follow-up. No significant changes in brain activity and quality of life were noted at post-intervention and follow-up in both groups. CONCLUSIONS The multiple sessions of anodal tDCS combined with moderate upper body exercise were feasible for individuals with neuropathic pain after spinal cord injury. However, the analgesic effect was not superior to exercise alone after 12 sessions of intervention, and the beneficial effect was observed at 4-week follow-up.
Collapse
Affiliation(s)
- Nai-Chen Yeh
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Fong Huang
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Hsin Ku
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis. Clin Neurophysiol 2020; 131:1806-1814. [DOI: 10.1016/j.clinph.2020.04.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
|
7
|
Abstract
A spinal cord injury (SCI) may result in impairments of motor, sensory, and autonomous functions below the injury level. Worldwide, the prevalence of SCI is 1:1000 and the incidence is between 4 and 9 new cases per 100,000 people per year. Most common causes for traumatic SCI are traffic accidents, falls, and violence. Nowadays, the proportion of patients with tetraplegia and paraplegia is equal. In industrialized countries, the percentage of nontraumatic injuries increases together with age. Most patients with initially preserved motor functions below the injury level show a substantial functional recovery, while three quarters of patients with initially complete SCI remain that way. In SCI, brain-computer interfaces (BCIs) may be used in the subacute phase as part of a restorative therapy program and, later, for control of assistive devices most needed by individuals with high cervical lesions. Research on structural and functional reorganization of the deefferented and deafferented brain after SCI is inconclusive mainly because of varying methods of analysis and the heterogeneity of the investigated populations. A better characterization of study participants with SCI together with documentation of confounding factors such as antispasticity medication or neuropathic pain is indicated.
Collapse
Affiliation(s)
- Rüdiger Rupp
- Experimental Neurorehabilitation, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
8
|
Slow-wave activity homeostasis in the somatosensory cortex after spinal cord injury. Exp Neurol 2019; 322:113035. [DOI: 10.1016/j.expneurol.2019.113035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
|
9
|
Remarkable hand grip steadiness in individuals with complete spinal cord injury. Exp Brain Res 2019; 237:3175-3183. [PMID: 31595331 DOI: 10.1007/s00221-019-05656-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022]
Abstract
Although no damage occurs in the brains of individuals with spinal cord injury, structural and functional reorganization occurs in the sensorimotor cortex because of the deafferentation of afferent signal input from below the injury level. This brain reorganization that is specific to individuals with spinal cord injury is speculated to contribute to the improvement of the motor function of the remaining upper limbs. However, no study has investigated in detail the motor function above the injury level. To clarify this, we designed an experiment using the handgrip force steadiness task, which is a popular technique for evaluating motor function as the index of the variability of common synaptic input to motoneurons. Fourteen complete spinal cord injury (cSCI) individuals in the chronic phase, fifteen individuals with lower limb disabilities, and twelve healthy controls participated in the study. We clarified that the force steadiness in the cSCI group was significantly higher than that in the control groups, and that sports years were significantly correlated with this steadiness. Furthermore, multiple analyses revealed that force steadiness was significantly predicted by sports years. These results suggest that brain reorganization after spinal cord injury can functionally affect the remaining upper limb motor function. These findings may have implications in the clinical rehabilitation field, such as occupational rehabilitation of the upper limbs. They also indicate that individuals with complete spinal cord injury, based on their enhanced force adjustment skills, would excel at fine motor tasks such as manufacturing and handicrafts.
Collapse
|
10
|
Jutzeler CR, Streijger F, Aguilar J, Shortt K, Manouchehri N, Okon E, Hupp M, Curt A, Kwon BK, Kramer JLK. Sensorimotor plasticity after spinal cord injury: a longitudinal and translational study. Ann Clin Transl Neurol 2018; 6:68-82. [PMID: 30656185 PMCID: PMC6331953 DOI: 10.1002/acn3.679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/12/2018] [Accepted: 10/03/2018] [Indexed: 11/06/2022] Open
Abstract
Objective The objective was to track and compare the progression of neuroplastic changes in a large animal model and humans with spinal cord injury. Methods A total of 37 individuals with acute traumatic spinal cord injury were followed over time (1, 3, 6, and 12 months post-injury) with repeated neurophysiological assessments. Somatosensory and motor evoked potentials were recorded in the upper extremities above the level of injury. In a reverse-translational approach, similar neurophysiological techniques were examined in a porcine model of thoracic spinal cord injury. Twelve Yucatan mini-pigs underwent a contusive spinal cord injury at T10 and tracked with somatosensory and motor evoked potentials assessments in the fore- and hind limbs pre- (baseline, post-laminectomy) and post-injury (10 min, 3 h, 12 weeks). Results In both humans and pigs, the sensory responses in the cranial coordinates of upper extremities/forelimbs progressively increased from immediately post-injury to later time points. Motor responses in the forelimbs increased immediately after experimental injury in pigs, remaining elevated at 12 weeks. In humans, motor evoked potentials were significantly higher at 1-month (and remained so at 1 year) compared to normative values. Conclusions Despite notable differences between experimental models and the human condition, the brain's response to spinal cord injury is remarkably similar between humans and pigs. Our findings further underscore the utility of this large animal model in translational spinal cord injury research.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center University Hospital Balgrist University of Zurich Zurich Switzerland.,ICORD University of British Columbia Vancouver British Columbia Canada.,School of Kinesiology University of British Columbia Vancouver British Columbia Canada
| | - Femke Streijger
- ICORD University of British Columbia Vancouver British Columbia Canada
| | - Juan Aguilar
- Experimental Neurophysiology Group Hospital Nacional de Parapléjicos SESCAM Toledo Spain
| | - Katelyn Shortt
- ICORD University of British Columbia Vancouver British Columbia Canada
| | - Neda Manouchehri
- Spinal Cord Injury Center University Hospital Balgrist University of Zurich Zurich Switzerland
| | - Elena Okon
- Spinal Cord Injury Center University Hospital Balgrist University of Zurich Zurich Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center University Hospital Balgrist University of Zurich Zurich Switzerland
| | - Armin Curt
- Spinal Cord Injury Center University Hospital Balgrist University of Zurich Zurich Switzerland.,European Multi-Centre Study about Spinal Cord Injury (EMSCI) Study Group University Hospital Balgrist University of Zurich Zurich 8008 Switzerland
| | - Brian K Kwon
- ICORD University of British Columbia Vancouver British Columbia Canada
| | - John L K Kramer
- ICORD University of British Columbia Vancouver British Columbia Canada.,School of Kinesiology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
11
|
Gant K, Guerra S, Zimmerman L, Parks BA, Prins NW, Prasad A. EEG-controlled functional electrical stimulation for hand opening and closing in chronic complete cervical spinal cord injury. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabb13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
López-Larraz E, Escolano C, Montesano L, Minguez J. Reactivating the Dormant Motor Cortex After Spinal Cord Injury With EEG Neurofeedback: A Case Study With a Chronic, Complete C4 Patient. Clin EEG Neurosci 2018; 50:1550059418792153. [PMID: 30084262 DOI: 10.1177/1550059418792153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic spinal cord injury (SCI) patients present poor motor cortex activation during movement attempts. The reactivation of this brain region can be beneficial for them, for instance, allowing them to use brain-machine interfaces for motor rehabilitation or restoration. These brain-machine interfacess generally use electroencephalography (EEG) to measure the cortical activation during the attempts of movement, quantifying it as the event-related desynchronization (ERD) of the alpha/mu rhythm. Based on previous evidence showing that higher tonic EEG alpha power is associated with higher ERD, we hypothesized that artificially increasing the alpha power over the motor cortex of these patients could enhance their ERD (ie, motor cortical activation) during movement attempts. We used EEG neurofeedback (NF) to enhance the tonic EEG alpha power, providing real-time visual feedback of the alpha oscillations measured over the motor cortex. This approach was evaluated in a C4, ASIA A, SCI patient (9 months after the injury) who did not present ERD during the movement attempts of his paralyzed hands. The patient performed 4 NF sessions (in 4 consecutive days) and screenings of his EEG activity before and after each session. After the intervention, the patient presented a significant increase in the alpha power over the motor cortex, and a significant enhancement of the mu ERD in the contralateral motor cortex when he attempted to close the assessed right hand. As a proof of concept investigation, this article shows how a short NF intervention might be used to enhance the motor cortical activation in patients with chronic tetraplegia.
Collapse
Affiliation(s)
- Eduardo López-Larraz
- 1 Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- 2 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, Zaragoza, Spain
- 3 Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
| | - Carlos Escolano
- 2 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, Zaragoza, Spain
- 3 Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- 4 Bit&Brain Technologies SL, Zaragoza, Spain
| | - Luis Montesano
- 2 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, Zaragoza, Spain
- 3 Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- 4 Bit&Brain Technologies SL, Zaragoza, Spain
| | - Javier Minguez
- 2 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, Zaragoza, Spain
- 3 Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- 4 Bit&Brain Technologies SL, Zaragoza, Spain
| |
Collapse
|
13
|
Vuckovic A, Jajrees M, Purcell M, Berry H, Fraser M. Electroencephalographic Predictors of Neuropathic Pain in Subacute Spinal Cord Injury. THE JOURNAL OF PAIN 2018; 19:1256.e1-1256.e17. [PMID: 29751110 DOI: 10.1016/j.jpain.2018.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/10/2018] [Accepted: 04/21/2018] [Indexed: 02/02/2023]
Abstract
It is widely believed that cortical changes are a consequence of longstanding neuropathic pain (NP). In this article, we demonstrate that NP in individuals with subacute spinal cord injury (SCI) has characteristic electroencephalography markers (EEG) that precede the onset of pain. EEG was recorded in a relaxed state and during motor imagination tasks in 10 able-bodied participants and 31 patients with subacute SCI (11 with NP, 10 without NP, and 10 who had pain develop within 6 months of EEG recording). All 20 patients with SCI initially without NP were tested for mechanically induced allodynia, but only 1 patient, who later had pain develop, reported an unpleasant sensation. The EEG reactivity to eye opening was reduced in the alpha band and absent in the theta and beta bands in the patients who later developed pain and was reduced in those who already had pain. Alpha band power was reduced at BA7 in both the relaxed state and during motor imagination in patients who either had or later developed pain compared with those without pain. All SCI groups had reduced dominant alpha frequency and beta band power at BA7. EEG reactivity to eye opening and reduced spontaneous and induced alpha activity over the parietal cortex were predictors of future NP, as well as markers of existing NP. Clinical Trial Registration Number: NCT02178917 PERSPECTIVE: We demonstrate that brain activity in patients with subacute SCI reveals both early markers and predictors of NP, which may manifest before sensory discomfort. These markers and predictors may complement known sensory phenotypes of NP. They may exist in other patient groups suffering from NP of central origin.
Collapse
Affiliation(s)
- Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom.
| | - Mohammed Jajrees
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom; Northern Technical University, Engineering Technical College of Mosul, Mosul, Iraq
| | - Mariel Purcell
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Helen Berry
- Biomedical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew Fraser
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
14
|
Tidoni E, Tieri G, Aglioti SM. Re-establishing the disrupted sensorimotor loop in deafferented and deefferented people: The case of spinal cord injuries. Neuropsychologia 2015; 79:301-9. [PMID: 26115603 DOI: 10.1016/j.neuropsychologia.2015.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 11/26/2022]
Abstract
Acting efficiently in the world depends on the activity of motor and somatosensory systems, the integration of which is necessary for the proper functioning of the sensorimotor loop (SL). Profound alterations of SL functioning follow spinal cord injury (SCI), a condition that brings about a disconnection of the body from the brain. Such disconnection creates a substantial deprivation of somatosensorial inputs and motor outputs. Consequent somatic deficits and motor paralysis affect the body below the lesion level. A complete restoration of normal functions of the SL cannot be expected until basic neuroscience has found a way to re-establish the interrupted neural connectivity. Meanwhile, studies should focus on the development of technical solutions for dealing with the disruption of the sensorimotor loop. This review discusses the structural and functional adaptive reorganization of the brain after SCI, and the maladaptive mechanisms that impact on the processing of body related information, which alter motor imagery strategies and EEG signals. Studies that show how residual functions (e.g. face tactile sensitivity) may help people to restore a normal body image are also reviewed. Finally, data on how brain and residual body signals may be used to improve brain computer interface systems is discussed in relation to the issue of how such systems may help SCI people to re-enter the world and interact with objects and other individuals.
Collapse
Affiliation(s)
- E Tidoni
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| | - G Tieri
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Braintrends Ltd, Applied Neuroscience, Rome, Italy
| | - S M Aglioti
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
15
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
16
|
Müller-Putz GR, Daly I, Kaiser V. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. J Neural Eng 2014; 11:035011. [PMID: 24835837 DOI: 10.1088/1741-2560/11/3/035011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.
Collapse
Affiliation(s)
- G R Müller-Putz
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Austria
| | | | | |
Collapse
|
17
|
Cremoux S, Tallet J, Berton E, Dal Maso F, Amarantini D. Motor-related cortical activity after cervical spinal cord injury: multifaceted EEG analysis of isometric elbow flexion contractions. Brain Res 2013; 1533:44-51. [PMID: 23939224 DOI: 10.1016/j.brainres.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Electroencephalographic (EEG) studies have well established that motor cortex (M1) activity ~20 Hz decreases during muscular contraction and increases as soon as contraction stops, which are known as event-related desynchronization (ERD) and event-related synchronization (ERS), respectively. ERD is supposed to reflect M1 activation, sending information to recruited muscles, while the process underlying ERS is interpreted either as active cortical inhibition or as processing of sensory inputs. Investigation of the process behind ERD/ERS in people with spinal cord injury (SCI) would be particularly relevant since their M1 remains effective despite decreased sensorimotor abilities. In this study, we recorded net joint torque and EEG in 6 participants with cervical SCI and 8 healthy participants who performed isometric elbow flexion at 3 force levels. Multifaceted EEG analysis was introduced to assess ERD/ERS according to their amplitude, frequency range and duration. The results revealed that net joint torque increased with the required force level for all participants and time to contraction inhibition was longer in the SCI group. At the cortical level, ERD/ERS frequency ranges increased with the required force level in all participants, indicating that the modulation of cortical activity with force level is preserved after SCI. However, ERS amplitude decreased only in SCI participants, which may be linked to delayed contraction inhibition. All in all, cortical modulation of frequency range and amplitude could reflect two different kinds of neural communication.
Collapse
Affiliation(s)
- Sylvain Cremoux
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France.
| | | | | | | | | |
Collapse
|
18
|
Central correlates of impaired information processing in people with spinal cord injury. J Clin Neurophysiol 2013; 30:59-65. [PMID: 23377444 DOI: 10.1097/wnp.0b013e31827edb0c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This investigation examined the impact of spinal cord injury (SCI) on task-relevant processing using event-related potentials. Thirty-seven participants with chronic SCI and 37 healthy able-bodied controls were tested in this study. An auditory two-tone button press oddball discrimination paradigm was used to evoke the N100, P200, N200, and P300 components of the event-related potential. During the early sensory/perceptual stages of target stimulus processing, the SCI group showed an earlier right posterior P200 latency relative to the controls. In the later more cognitive stages, a pattern of diminished left and right posterior P300 amplitude was also evident. This was further coupled with increased false-positive errors and greater variability of response time in the SCI group. The results of this study indicate that people with SCI show disturbances in inhibitory function and alterations in both early perceptual encoding processes and in later executive functioning that engages contextual/memory-updating operations.
Collapse
|
19
|
Delong G. A positive association found between autism prevalence and childhood vaccination uptake across the U.S. population. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:903-916. [PMID: 21623535 DOI: 10.1080/15287394.2011.573736] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The reason for the rapid rise of autism in the United States that began in the 1990s is a mystery. Although individuals probably have a genetic predisposition to develop autism, researchers suspect that one or more environmental triggers are also needed. One of those triggers might be the battery of vaccinations that young children receive. Using regression analysis and controlling for family income and ethnicity, the relationship between the proportion of children who received the recommended vaccines by age 2 years and the prevalence of autism (AUT) or speech or language impairment (SLI) in each U.S. state from 2001 and 2007 was determined. A positive and statistically significant relationship was found: The higher the proportion of children receiving recommended vaccinations, the higher was the prevalence of AUT or SLI. A 1% increase in vaccination was associated with an additional 680 children having AUT or SLI. Neither parental behavior nor access to care affected the results, since vaccination proportions were not significantly related (statistically) to any other disability or to the number of pediatricians in a U.S. state. The results suggest that although mercury has been removed from many vaccines, other culprits may link vaccines to autism. Further study into the relationship between vaccines and autism is warranted.
Collapse
Affiliation(s)
- Gayle Delong
- Department of Economics and Finance, Baruch College/City University of New York, New York, New York, USA.
| |
Collapse
|
20
|
Ikegami S, Takano K, Saeki N, Kansaku K. Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury. Clin Neurophysiol 2010; 122:991-6. [PMID: 20880741 DOI: 10.1016/j.clinph.2010.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study evaluates the efficacy of a P300-based brain-computer interface (BCI) with green/blue flicker matrices for individuals with cervical spinal cord injury (SCI). METHODS Ten individuals with cervical SCI (age 26-53, all male) and 10 age- and sex-matched able-bodied controls (age 27-52, all male) with no prior BCI experience were asked to input hiragana (Japanese alphabet) characters using the P300 BCI with two distinct types of visual stimuli, white/gray and green/blue, in an 8×10 flicker matrix. Both online and offline performance were evaluated. RESULTS The mean online accuracy of the SCI subjects was 88.0% for the white/gray and 90.7% for the green/blue flicker matrices. The accuracy of the control subjects was 77.3% and 86.0% for the white/gray and green/blue, respectively. There was a significant difference in online accuracy between the two types of flicker matrix. SCI subjects performed with greater accuracy than controls, but the main effect was not significant. CONCLUSIONS Individuals with cervical SCI successfully controlled the P300 BCI, and the green/blue flicker matrices were associated with significantly higher accuracy than the white/gray matrices. SIGNIFICANCE The P300 BCI with the green/blue flicker matrices is effective for use not only in able-bodied subjects, but also in individuals with cervical SCI.
Collapse
Affiliation(s)
- Shiro Ikegami
- Cognitive Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | | | | | | |
Collapse
|
21
|
Wydenkeller S, Maurizio S, Dietz V, Halder P. Neuropathic pain in spinal cord injury: significance of clinical and electrophysiological measures. Eur J Neurosci 2009; 30:91-9. [PMID: 19558605 DOI: 10.1111/j.1460-9568.2009.06801.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A large percentage of spinal cord-injured subjects suffer from neuropathic pain below the level of the lesion (bNP). The neural mechanisms underlying this condition are not clear. The aim of this study was to elucidate the general effects of spinal deafferentiation and of bNP on electroencephalographic (EEG) activity. In addition, the relationship between the presence of bNP and impaired function of the spinothalamic tract was studied. Measurements were performed in complete and incomplete spinal cord-injured subjects with and without bNP as well as in a healthy control group. Spinothalamic tract function, assessed by contact heat evoked potentials, did not differ between subjects with and without bNP; nevertheless, it was impaired in 94% of subjects suffering from bNP. In the EEG recordings, the degree of deafferentiation was reflected in a slowing of EEG peak frequency in the 6-12-Hz band. Taking into account this unspecific effect, spinal cord-injured subjects with bNP showed significantly slower EEG activity than subjects without bNP. A discrimination analysis in the subjects with spinothalamic tract dysfunction correctly classified 84% of subjects as belonging to either the group with bNP or the group without bNP, according to their EEG peak frequency. These findings could be helpful for both the development of an objective diagnosis of bNP and for testing the effectiveness of new therapeutic agents.
Collapse
Affiliation(s)
- Susanne Wydenkeller
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | | | | | | |
Collapse
|