1
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
2
|
Smith AN, Shaughness M, Collier S, Hopkins D, Byrnes KR. Therapeutic targeting of microglia mediated oxidative stress after neurotrauma. Front Med (Lausanne) 2022; 9:1034692. [PMID: 36405593 PMCID: PMC9671221 DOI: 10.3389/fmed.2022.1034692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 10/06/2023] Open
Abstract
Inflammation is a primary component of the central nervous system injury response. Traumatic brain and spinal cord injury are characterized by a pronounced microglial response to damage, including alterations in microglial morphology and increased production of reactive oxygen species (ROS). The acute activity of microglia may be beneficial to recovery, but continued inflammation and ROS production is deleterious to the health and function of other cells. Microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), mitochondria, and changes in iron levels are three of the most common sources of ROS. All three play a significant role in post-traumatic brain and spinal cord injury ROS production and the resultant oxidative stress. This review will evaluate the current state of therapeutics used to target these avenues of microglia-mediated oxidative stress after injury and suggest avenues for future research.
Collapse
Affiliation(s)
- Austin N. Smith
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Sean Collier
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Hopkins
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R. Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Cong P, Tong C, Mao S, Shi X, Liu Y, Shi L, Jin H, Liu Y, Hou M. Proteomic global proteins analysis in blast lung injury reveals the altered characteristics of crucial proteins in response to oxidative stress, oxidation-reduction process and lipid metabolic process. Exp Lung Res 2022; 48:275-290. [PMID: 36346360 DOI: 10.1080/01902148.2022.2143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Blast lung injury (BLI) is the most common fatal blast injury induced by overpressure wave in the events of terrorist attack, gas and underground explosion. Our previous work revealed the characteristics of inflammationrelated key proteins involved in BLI, including those regulating inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process. However, the molecular characteristics of oxidative-related proteins in BLI ar still lacking. Methods: In this study, protein expression profiling of the blast lungs obtained by tandem mass tag (TMT) spectrometry quantitative proteomics were re-analyzed to identify the characteristics of oxidative-related key proteins. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h and 1 w after blast exposure. The differential protein expression was identified by bioinformatics analysis and verified by western blotting. Results: The results demonstrated that thoracic blast exposure induced reactive oxygen species generation and lipid peroxidation in the lungs. Analysis of global proteins and oxidative-related proteomes showed that 62, 59, 73, 69, 27 proteins (accounted for 204 distinct proteins) were identified to be associated with oxidative stress at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. These 204 distinct proteins were mainly enriched in response to oxidative stress, oxidation-reduction process and lipid metabolic process. We also validated these results by western blotting. Conclusions: These findings provided new perspectives on blast-induced oxidative injury in lung, which may potentially benefit the development of future treatment of BLI.
Collapse
Affiliation(s)
- Peifang Cong
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Changci Tong
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Shun Mao
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Lin Shi
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China.,Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China.,The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Sivandzade F, Alqahtani F, Cucullo L. Impact of chronic smoking on traumatic brain microvascular injury: An in vitro study. J Cell Mol Med 2021; 25:7122-7134. [PMID: 34160882 PMCID: PMC8335687 DOI: 10.1111/jcmm.16741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post‐TBI injuries by promoting vascular endothelial impairments. Indeed, TS‐induced oxidative stress (OS) and inflammation can hamper the blood‐brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS‐exposed mouse brain microvascular endothelial cells (mBMEC‐P5) following scratch injury. The expression of BBB integrity–associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT‐PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2–related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS‐free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
5
|
Yu C, Zhang J, Li X, Liu J, Niu Y. Astragaloside IV-induced Nrf2 nuclear translocation ameliorates lead-related cognitive impairments in mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118853. [PMID: 32941941 DOI: 10.1016/j.bbamcr.2020.118853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Recently, oxidative stress is a common denominator in the pathogenesis of metal-induced neurotoxicity. Thus, antioxidant therapy is considered as a promising strategy for treating lead-related cognitive impairment. Here, we tested the hypothesis that astragaloside IV (AS-IV) ameliorates lead-associated cognitive deficits through Nrf2-dependent antioxidant mechanisms. Male Nrf2-KO and WT mice received drinking water with 2000 ppm lead and/or AS-IV by gavage for 8 weeks starting at 4 weeks of age. Morris water maze test and biochemical assays were employed to study cognition-enhancing and antioxidant effects of AS-IV. The signaling pathways involved were analyzed using RT-PCR and western blot technology. Significantly, AS-IV attenuated Morris water maze-based cognitive impairment in lead-intoxicated mice. Importantly, cognition-enhancing effect of AS-IV was lost in Nrf2-KO mice. In parallel, AS-IV suppressed lead acetate (PbAc)-induced oxidative stress, as measured by MDA. Mechanistically, AS-IV can up-regulate the expressions of the GCLc and HO-1 at the level of transcription and translation, but not SOD, TrxR activity, GCLm, Trx1, and NQO1 expression. Interestingly, AS-IV induced accumulation of Nrf2 in the nucleus, whereas Nrf2 mRNA levels were unchanged. Furthermore, AS-IV treatment resulted in elevated levels of phosphorylated Akt (active form) and phosphorylated GSK-3β (inactive forms) but decreased level of phosphorylated Fyn. Collectively, our findings indicate that AS-IV may target Nrf2 to attenuate lead-triggered oxidative stress and subsequent cognitive impairments, suggesting that AS-IV is a potential candidate for the treatment of lead-associated cognitive diseases.
Collapse
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jicheng Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
6
|
Zhou L, Zhou M, Tan H, Xiao M. Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104547. [PMID: 32359539 DOI: 10.1016/j.pestbp.2020.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Pesticide residue is a common problem worldwide. Cypermethrin is a type II pyrethroid pesticide that has been widely used in recent years. It has become a widespread residual pesticide in the environment and agricultural products. The neurotoxicity of cypermethrin remains a matter of concern. However, few studies have evaluated its toxicity on cerebral cortical neurons. As the center of the nervous system, the cerebral cortex is involved in a series of biological processes, such as learning, memory, emotions, and movement. The Nrf2/ARE signaling pathway has been considered to play a protective role in several central nervous system (CNS) diseases. We investigated whether this pathway plays a protective role in cypermethrin-induced apoptosis of the cortical neurons. We established a cypermethrin-induced apoptosis model in the cortical neurons using different cypermethrin doses and different incubation periods. The changes in Nrf2 protein and mRNA expression and its downstream genes HO-1 and NQO1 were detected by quantitative real-time PCR and Western blotting to study the role of the Nrf2/ARE pathway in cypermethrin-induced apoptosis of the cortical neurons. The results showed that the Nrf2/ARE signaling pathway has a protective effect in cypermethrin-induced apoptosis of the cortical neurons. However, this protective effect of the Nrf2/ARE pathway is very limited and is dependent on the exposure dose and exposure period of cypermethrin.
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Mengqing Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Handan Tan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Mengxi Xiao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
7
|
Sivandzade F, Alqahtani F, Sifat A, Cucullo L. The cerebrovascular and neurological impact of chronic smoking on post-traumatic brain injury outcome and recovery: an in vivo study. J Neuroinflammation 2020; 17:133. [PMID: 32340626 PMCID: PMC7184717 DOI: 10.1186/s12974-020-01818-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is among the most prevalent causes of cerebrovascular and neurological damage worldwide. To this end, tobacco smoke (TS) has been shown to promote vascular inflammation, neurovascular impairments, and risk of cerebrovascular and neurological disorders through oxidative stress (OS) stimuli targeting the blood-brain barrier (BBB) endothelium among others. It has been recently suggested that premorbid conditions such as TS may exacerbate post-TBI brain damage and impact recovery. METHODS Our study investigated the mechanisms underlying the exacerbation of TBI injury by TS using a weight drop model. For this purpose, male C57BL/6J mice, age range 6-8 weeks, were chronically exposed to premorbid TS for 3 weeks. Test animals were then subjected to TBI by guided vertical head weight drop using a 30 g metal weight free felling from an 80 cm distance before reaching the target. We analyzed the physical activity and body weight of the mice before TBI and 1 h, 24 h, and 72 h post-injury. Finally, mice were sacrificed to collect blood and brain samples for subsequent biochemical and molecular analysis. Western blotting was applied to assess the expression of Nrf2 (a critical antioxidant transcription factor) as well as tight junction proteins associated with BBB integrity including ZO-1, Occludin, and Claudin-5 from brain tissues homogenates. Levels of NF-kB (a pro-inflammatory transcript factor which antagonizes Nrf2 activity) and pro-inflammatory cytokines IL-6, IL-10, and TNF-α were assessed in blood samples. RESULTS Our data revealed that premorbid TS promoted significantly increased inflammation and loss of BBB integrity in TBI when compared to TS-Free test mice. Additionally, mice chronically exposed to TS before TBI experienced a more significant weight loss, behavioral and motor activity deficiency, and slower post-TBI recovery when compared to TS-free TBI mice. CONCLUSION The effects of premorbid TS appear consequential to the abrogation of physiological antioxidative and anti-inflammatory response to TBI leading to worsening impairments of the BBB, OS damage, and inflammation. These factors are also likely responsible for the retardation of post-traumatic recovery observed in these animals.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Ali Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106 USA
| |
Collapse
|
8
|
Sivandzade F, Alqahtani F, Cucullo L. Traumatic Brain Injury and Blood-Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition. Int J Mol Sci 2020; 21:E2721. [PMID: 32295258 PMCID: PMC7215684 DOI: 10.3390/ijms21082721] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood-brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
9
|
Sivandzade F, Bhalerao A, Cucullo L. Cerebrovascular and Neurological Disorders: Protective Role of NRF2. Int J Mol Sci 2019; 20:ijms20143433. [PMID: 31336872 PMCID: PMC6678730 DOI: 10.3390/ijms20143433] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular defense mechanisms, intracellular signaling, and physiological functions are regulated by electrophiles and reactive oxygen species (ROS). Recent works strongly considered imbalanced ROS and electrophile overabundance as the leading cause of cellular and tissue damage, whereas oxidative stress (OS) plays a crucial role for the onset and progression of major cerebrovascular and neurodegenerative pathologies. These include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), stroke, and aging. Nuclear factor erythroid 2-related factor (NRF2) is the major modulator of the xenobiotic-activated receptor (XAR) and is accountable for activating the antioxidative response elements (ARE)-pathway modulating the detoxification and antioxidative responses of the cells. NRF2 activity, however, is also implicated in carcinogenesis protection, stem cells regulation, anti-inflammation, anti-aging, and so forth. Herein, we briefly describe the NRF2–ARE pathway and provide a review analysis of its functioning and system integration as well as its role in major CNS disorders. We also discuss NRF2-based therapeutic approaches for the treatment of neurodegenerative and cerebrovascular disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|