1
|
Yang Y, Li X, Lu J, Ge J, Chen M, Yao R, Tian M, Wang J, Liu F, Zuo C. Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Neural Regen Res 2025; 20:93-106. [PMID: 38767479 PMCID: PMC11246150 DOI: 10.4103/1673-5374.391180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Abstract
Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zainudin NAB, Zulkifli NN, Abdul Hamid K, Hashim H, Mansor S. A Pilot Study of the Striatal Dopamine Transporter Levels in Kratom-Dependent and Normal Subjects Using 99mTc-TRODAT-1 Single Photon Emission Computed Tomography-Computed Tomography (SPECT-CT). Cureus 2023; 15:e43251. [PMID: 37692587 PMCID: PMC10491945 DOI: 10.7759/cureus.43251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE The study aims to elucidate the effects of kratom addiction on dopamine transporter (DAT) using [2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3-)-N2,N20,S2,S20]oxo-[1R-(exo-exo)]-[99mTc] technetium (99mTc-TRODAT-1) brain single photon emission computed tomography-computed tomography (SPECT-CT) in kratom-dependent and healthy subjects. MATERIALS AND METHODS We recruited 12 kratom-dependent subjects and 13 healthy men to participate in this study. Addiction, craving, depression, and cognitive scores were assessed. All subjects received a single bolus injection of 99mTc-TRODAT-1 with 914.1 MBq ± 65.5 of activity (mean ± SD). The brain SPECT-CT images were reconstructed using 3D ordered subset expectation maximization (3D-OSEM) along with attenuation correction (AC), scatter correction (SC), and resolution recovery (RR) with an iteration number of four and a subset of 10. The Cohen's Kappa interrater-reliability between two raters, the standardized uptake value of body weight (SUVBW), and the asymmetrical index percentage (AI%) were evaluated. RESULTS Kappa statistics showed a fine agreement of abnormal 99mTc-TRODAT-1 uptake in the striatum region for the kratom-dependent group with the κ value of 0.69 (p = 0.0001), and the percentage of agreement for rater 1 and rater 2 was 56% and 64%, respectively. There was a reduction in average SUV in kratom-dependent subjects compared to healthy control subjects in the left caudate and left striatum (0.938 vs. 1.251, p = 0.014, and 1.055 vs. 1.29, p = 0.036, respectively). There was a significant difference in the AI% of the caudate region between the kratom-dependent group and the normal group (33% vs. 14%, p = 0.019). CONCLUSION Our findings signify that kratom addiction, may cause a change in DAT level and the results can be confirmed using 99mTc-TRODAT-1 SPECT-CT.
Collapse
Affiliation(s)
| | | | - Khadijah Abdul Hamid
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| | - Hazlin Hashim
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| | - Syahir Mansor
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| |
Collapse
|
3
|
Determination of the Unilaterally Damaged Region May Depend on the Asymmetry of Carotid Blood Flow Velocity in Hemiparkinsonian Monkey: A Pilot Study. PARKINSON'S DISEASE 2022; 2022:4382145. [PMID: 36407681 PMCID: PMC9668443 DOI: 10.1155/2022/4382145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.
Collapse
|
4
|
Chen Q, Li X, Li L, Lu J, Sun Y, Liu F, Zuo C, Wang J. Dopamine transporter imaging in progressive supranuclear palsy: Severe but nonspecific to subtypes. Acta Neurol Scand 2022; 146:237-245. [PMID: 35611608 DOI: 10.1111/ane.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies with a limited sample size suggested more severe dopaminergic transporter (DAT) lesions in the striatum of progressive supranuclear palsy (PSP) than those in Parkinson's disease (PD) and multiple system atrophy-parkinsonism (MSA-P). However, few studies had taken various subtypes of PSP into consideration, making the reanalysis of DAT imaging in larger PSP cohort with various subtypes in need. OBJECTIVES To compare the dopaminergic lesion patterns of PSP with MSA-P and PD, and to explore the specific striatal subregional patterns of different PSP subtypes. METHODS 11 C-CFT positron emission tomography (PET) imaging was conducted in 83 PSP patients consisting of different subtypes, 61 patients with PD, 41 patients with MSA-P, and 43 healthy volunteers. Demographic and clinical data were compared by the chi-squared test or one-way analysis of variance. A generalized linear model was used to examine intergroup differences in tracer uptake values after adjusting for age, disease duration, and disease severity. Areas under the receiver operating characteristic curve were calculated to assess the diagnostic accuracy of subregional DAT binding patterns. RESULTS The patients with PSP presented more severe DAT loss in the striatum than in PD and MSA-P, especially in caudate. In PSP, the subregional lesion was still more severe in putamen than in caudate, similar to that in PD and MSA-P. Among detailed subtypes, no significant difference was detected. CONCLUSION The dopaminergic lesions were more severe in PSP, and no difference was detected among subtypes.
Collapse
Affiliation(s)
- Qi‐Si Chen
- Department of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital Fudan University Shanghai China
| | - Xin‐Yi Li
- Department of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital Fudan University Shanghai China
| | - Ling Li
- PET Center, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital Fudan University Shanghai China
| | - Jia‐Ying Lu
- PET Center, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital Fudan University Shanghai China
| | - Yi‐Min Sun
- Department of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital Fudan University Shanghai China
| | - Feng‐Tao Liu
- Department of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital Fudan University Shanghai China
| | - Chuan‐Tao Zuo
- PET Center, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital Fudan University Shanghai China
| | - Jian Wang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
5
|
Peng X, Feng Y, Ji S, Amos JT, Wang W, Li M, Ai S, Qiu X, Dong Y, Ma D, Yao D, Valdes-Sosa PA, Ren P. Gait Analysis by Causal Decomposition. IEEE Trans Neural Syst Rehabil Eng 2021; 29:953-964. [PMID: 34029190 DOI: 10.1109/tnsre.2021.3082936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have investigated bilateral gaits based on the causality analysis of kinetic (or kinematic) signals recorded using both feet. However, these approaches have not considered the influence of their simultaneous causation, which might lead to inaccurate causality inference. Furthermore, the causal interaction of these signals has not been investigated within their frequency domain. Therefore, in this study we attempted to employ a causal-decomposition approach to analyze bilateral gait. The vertical ground reaction force (VGRF) signals of Parkinson's disease (PD) patients and healthy control (HC) individuals were taken as an example to illustrate this method. To achieve this, we used ensemble empirical mode decomposition to decompose the left and right VGRF signals into intrinsic mode functions (IMFs) from the high to low frequency bands. The causal interaction strength (CIS) between each pair of IMFs was then assessed through the use of their instantaneous phase dependency. The results show that the CISes between pairwise IMFs decomposed in the high frequency band of VGRF signals can not only markedly distinguish PD patients from HC individuals, but also found a significant correlation with disease progression, while other pairwise IMFs were not able to produce this. In sum, we found for the first time that the frequency specific causality of bilateral gait may reflect the health status and disease progression of individuals. This finding may help to understand the underlying mechanisms of walking and walking-related diseases, and offer broad applications in the fields of medicine and engineering.
Collapse
|