1
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Bhattacharya A, Parlanti P, Cavallo L, Farrow E, Spivey T, Renieri A, Mari F, Manzini MC. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum Mol Genet 2024; 33:1229-1240. [PMID: 38652285 DOI: 10.1093/hmg/ddae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Paola Parlanti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Luca Cavallo
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Edward Farrow
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Tyler Spivey
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - M Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
3
|
Yi S, Tang X, Zhang Q, Liang Y, Huang J, Zhang S, Huang L, Yi S, Huang M, Qin Z, Luo J. A nonsense CC2D1A variant is associated with congenital anomalies, motor delay, hypotonia, and slight deformities. Heliyon 2024; 10:e27946. [PMID: 38496842 PMCID: PMC10944275 DOI: 10.1016/j.heliyon.2024.e27946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background Autosomal recessive intellectual developmental disorder-3 is caused by homozygous or compound heterozygous mutations in the CC2D1A gene. The disorder is characterized by intellectual disability (ID) and autism spectrum disorder (ASD). To date, 39 patients from 17 families with CC2D1A -related disorders have been reported worldwide, in whom only six pathogenic or likely pathogenic loss-of-function variants and three variants of uncertain significance (VUS) in the CC2D1A gene have been identified in these patients. Methods We described a patient with ID from a non-consanguineous Chinese family and whole-exome sequencing (WES) was used to identify the causative gene. Results The patient presented with severe ID and ASD, speech impairment, motor delay, hypotonia, slight facial anomalies, and finger deformities. Threatened abortion and abnormal fetal movements occurred during pregnancy with the proband but not his older healthy sister. WES analysis identified a homozygous nonsense variant, c.736C > T (p.Gln246Ter), in the CC2D1A gene. In addition, six novel likely pathogenic CC2D1A variants were identified by a retrospective review of the in-house database. Conclusions This study expands the genetic and clinical spectra of CC2D1A-associated disorders, and may aid in increasing awareness of this rare condition. Our findings have provided new insights into the clinical heterogeneity of the disease and further phenotype-genotype correlation, which could help to offer scope for more accurate genetic testing and counseling to affected families.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Liang
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Huang
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Minpan Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Guler A, Tufan E, Doganyigit Z, Rassoulzadegan M. Partial changes in apoptotic pathways in hippocampus and hypothalamus of Cc2d1a heterozygous. Metab Brain Dis 2023; 38:531-541. [PMID: 36454503 DOI: 10.1007/s11011-022-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Alterations in the apoptosis pathway have been linked to changes in serotonin levels seen in autistic patients. Cc2d1a is a repressor of the HTR1A gene involved in the serotonin pathway. The hippocampus and hypothalamus of Cc2d1a ± mice were analyzed for the expression of apoptosis markers (caspase 3, 8 and 9). Gender differences were observed in the expression levels of the three caspases consistent with some altered activity in the open-field assay. The number of apoptotic cells was significantly increased. We concluded that apoptotic pathways are only partially affected in the pathogenesis of the Cc2d1a heterozygous mouse model. A) Apoptosis is suppressed because the cell does not receive a death signal, or the receptor cannot activate the caspase 8 pathway despite the death signal. B) Since Caspase 8 and Caspase 3 expression is downregulated in our mouse model, the mechanism of apoptosis is not activated.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey.
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.
| | - Halime Dana
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ahsen Guler
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Esra Tufan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Bozok University Medical Faculty, 66100, Yozgat, Turkey
| | - Minoo Rassoulzadegan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
- INSERM-CNRS, IRCAN, Universite Cote d'Azur (UCA), 06107, Nice, France
| |
Collapse
|