1
|
Malik R, Khatri K, Saxena R, Warkar SG. Fabrication of carboxymethyl tamarind kernel gum-based hydrogel and its applicability in different types of soils for agronomy. Int J Biol Macromol 2024; 280:135616. [PMID: 39278432 DOI: 10.1016/j.ijbiomac.2024.135616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
An avant-garde agricultural hydrogel - Carboxymethyl tamarind kernel gum-poly sodium acrylate-polyacrylamide hydrogel was designed by free-radical polymerization of biopolymer: carboxy-methyl tamarind kernel gum and monomers: sodium acrylate, acrylamide, using N,N' methylene bisacrylamide as crosslinker and potassium persulphate as initiator, to explore its application as a soil conditioner. It was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric techniques. Swelling was investigated at different pH and in saline solutions. The fabricated hydrogel absorbed 189 ml/g of distilled water. Minimal 0.1 % hydrogel-amended different soils unveiled an upswing in maximum water holding capacity: Sandy soil (43%), Clay soil (31 %), Silty soil (29 %) & Loamy soil (9 %).; decrease in porosity: Sandy (29 %) > Loamy (15.2 %) > Silty (6 %) > Clay (5.9 %), increase in available water content: Clay soil (17.52 %), Silty (13.45 %), Loamy soil (9.416 %), Sandy soil (10.375 %); increase in bulk density: Clay (1.7 %), Silty (5.3 %), Loamy (10 %) and Sandy (13%) as compared to control sample. These sequels were corroborated by water retention capacity in chickpea plants. The designed hydrogel, as a soil conditioner, was commendable in all types of soils but is worth applying in sandy and loamy soils. This hydrogel richly assists as a soil conditioner and boosts plant performance in a green eco-friendly way.
Collapse
Affiliation(s)
- Ritu Malik
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India
| | - Khushbu Khatri
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, -110007, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India.
| |
Collapse
|
2
|
Chen C, Zhang W, Wang P, Zhang Y, Zhu Y, Li Y, Wang R, Ren F. Thermo-responsive composite nanoparticles based on hydroxybutyl chitosan oligosaccharide: Fabrication, stimulus release and cancer therapy. Int J Biol Macromol 2024; 276:133842. [PMID: 39004251 DOI: 10.1016/j.ijbiomac.2024.133842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Designing thermo-responsive nanocarriers based on biopolymers is fascinating and challenging for cancer therapy. In this study, thermo-responsive composite nanoparticles (CNPs) were prepared using hydroxybutyl chitosan oligosaccharide (HBCOS) and sodium caseinate (SC) via electrostatic interactions and covalent crosslinking. The temperature-responsive behaviors of CNPs were induced by the breakage of hydrogen bonds and the shrinkage of chains in nanoparticles. The CNPs exhibited concentration-independent thermo-responsive behavior, non-adsorption aggregation, and non-hemolysis, suggesting excellent stability and thermo-sensitivity. The initial release rate and final amount of DOX released from CNPs at 42 °C were higher than that at 37 °C, showing a thermo-responsive release, which was also more prominent at lower pH. The release of DOX from CNPs followed first order kinetics based on Fickian diffusion. In vitro cytotoxicity assays confirmed the thermo-responsive antitumor activity of DOX-loaded CNPs as the HT-29 cell viability incubated with DOX-loaded CNPs at 42 °C was significantly lower than that at 37 °C. Cellular uptake experiments proved that DOX-loaded CNPs accumulated in the cytoplasm after being endocytosed and promoted DOX release by increasing environment temperature. This study generated stable thermo-sensitive CNPs based on biopolymers, which can be used as potential nanocarriers for the controlled release of anticancer drugs for cancer therapy.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yinhua Zhu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
3
|
Nassar N, Kasapis S. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals. Int J Pharm 2023; 633:122634. [PMID: 36690133 DOI: 10.1016/j.ijpharm.2023.122634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Recent advances in developing and applying therapeutic peptides for anticancer, antimicrobial and immunomodulatory remedies have opened a new era in therapeutics. This development has resulted in the engineering of new biologics as part of a concerted effort by the pharmaceutical industry. Many alternative routes of administration and delivery vehicles, targeting better patient compliance and optimal therapeutic bioavailability, have emerged. However, the design of drug delivery systems to protect a range of unstable macromolecules, including peptides and proteins, from high temperatures, acidic environments, and enzymatic degradation remains a priority. Herein, we give chronological insights in the development of controlled-release drug delivery systems that occurred in the last 70 years or so. Subsequently, we summarise the key physicochemical characteristics of hydrogels contributing to the development of protective delivery systems concerning drug-targeted delivery in the chronospatial domain for biopharmaceuticals. Furthermore, we shed some light on promising hydrogels that can be utilised for systemic bioactive administration.
Collapse
Affiliation(s)
- Nazim Nassar
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| |
Collapse
|
4
|
Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, Lee SL, Ponnusamy VK. Sustainable approaches on industrial food wastes to value-added products - A review on extraction methods, characterizations, and its biomedical applications. ENVIRONMENTAL RESEARCH 2023; 217:114758. [PMID: 36400225 DOI: 10.1016/j.envres.2022.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
Collapse
Affiliation(s)
- Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sivasankari Marimuthu
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sankar Malayandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Vinoth Kumar Ponnusamy
- Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
Veronica N, Heng PWS, Liew CV. Alginate-based matrix tablets for drug delivery. Expert Opin Drug Deliv 2023; 20:115-130. [PMID: 36503355 DOI: 10.1080/17425247.2023.2158183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations. AREAS COVERED This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed. EXPERT OPINION Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.
Collapse
Affiliation(s)
- Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Celine Valeria Liew
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia
| |
Collapse
|
6
|
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Batool N, Sarfraz RM, Mahmood A, Zafar N, Minhas MU, Hussain Z, Rehman U. Biocompatible polymeric blend for
pH
driven delivery of cytarabine: Effect of feed contents on swelling and release kinetics. J Biomed Mater Res B Appl Biomater 2022; 110:1545-1562. [DOI: 10.1002/jbm.b.35016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Nighat Batool
- College of Pharmacy, Faculty of Pharmacy University of Sargodha Sargodha Pakistan
| | - Rai Muhammad Sarfraz
- College of Pharmacy, Faculty of Pharmacy University of Sargodha Sargodha Pakistan
| | - Asif Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| | - Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| | - Muhammad Usman Minhas
- Department of Pharmaceutics, Faculty of Pharmacy The University of Lahore Lahore Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy University of Sharjah Sharjah United Arab Emirates
| | - Umaira Rehman
- College of Pharmacy, Faculty of Pharmacy University of Sargodha Sargodha Pakistan
| |
Collapse
|
8
|
Shaikh MAJ, Gilhotra R, Pathak S, Mathur M, Iqbal HMN, Joshi N, Gupta G. Current update on psyllium and alginate incorporate for interpenetrating polymer network (IPN) and their biomedical applications. Int J Biol Macromol 2021; 191:432-444. [PMID: 34560150 DOI: 10.1016/j.ijbiomac.2021.09.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
Natural polysaccharides and their designed structures are extremely valuable due to their intrinsic pharmacological properties and are also used as pharmaceutical aids. These naturally occurring polysaccharides (e.g., psyllium and alginate) are gaining popularity for their use in the preparation of interpenetrating polymer network (IPN) materials with improved swelling ability, biodegradability, stability, non-cytotoxic, biocompatibility, and cost-effectiveness. IPN is prepared sequentially or simultaneously by microwave irradiation, casting evaporation, emulsification cross-linking, miniemulsion/inverse miniemulsion technique, and radiation polymerization methods. In addition, the prepared IPNs have has been extensively characterized using various analytical and imaging techniques before sustainable deployment for multiple applications. Regardless of these multi-characteristic attributes, the current literature lacks a detailed overview of the biomedical aspects of psyllium, alginate, and their engineered IPN structures. Herein, we highlight the unique synthesis, structural, and biomedical considerations of psyllium, alginate, and engineered IPN structures. In this review, a wide range of biomedical applications, such as role as a drug carrier for sustain delivery, wound dressing, tissue engineering, and related miscellaneous application of psyllium, alginate, and their IPN structures described with appropriate examples. Further research will be carried out for the development of IPN using psyllium and alginate, which will be a smart and active carrier for drugs used in the treatment of life-threatening diseases due to their inherent pharmacological potential such as hypoglycemic, immunomodulatory, antineoplastic, and antimicrobial.
Collapse
Affiliation(s)
| | - Ritu Gilhotra
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Sachchidanand Pathak
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Manas Mathur
- School of Agriculture, Suresh GyanVihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, District-Sikar, Rajasthan, India.
| | - Gaurav Gupta
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India.
| |
Collapse
|
9
|
Katoch A, Nagpal M, Kaur M, Singh M, Aggarwal G, Dhingra GA. Development and Characterization of LBG-PVA Interpenetrating Networks Incorporating Gliclazide for Sustained Release. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200719143513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Controlled oral dosage forms have always been preferred for drugs with
variable absorption, and short biological half life and frequent dosing. The prime goal with sustained
release systems is to maintain uniform therapeutic blood levels for more extended periods of
time. Interpenetrating networks (IPNs) have been evidenced as uniform sustained release systems.
In the current study, polyvinyl alcohol (PVA) and locust bean gum (LBG) based IPNs were developed
for the oral sustained release drug delivery of gliclazide (shows variable absorption).
Methods:
The IPNs were synthesized by emulsion cross-linking method using glutaraldehyde (GA)
as a cross linking agent. Gliclazide is a potential second generation, and short-acting sulfonylurea
oral hypoglycemic agent having a short biological half-life (2-4 h), variable absorption and poor
oral bioavailability. Various batches of IPNs were formulated by varying LBG: PVA ratio and
evaluated for percentage yield, drug entrapment efficiency (DEE), swelling properties and in vitro
drug release studies. Further characterizations were done by Fourier Transform Infrared Spectroscopy
(FTIR), C13 Solid state NMR, X-Ray diffraction study (XRD), Scanning electron microscopy
(SEM), and Differential scanning microscopy (DSC) studies.
Results:
The percentage yield, drug entrapment and equilibrium swelling were observed to be dependent
on PVA-LBG ratio and GA amount. Sustained release of drug was observed in all IPN
formulations (approx 59 - 86% in 8 h in various batches) with variable release kinetics. SEM studies
revealed the regular structures of IPNs. FTIR, XRD, C13 Solid state NMR and DSC studies
proposed that drug was successfully incorporated into the formed IPNs.
Conclusion:
IPNs of LBG and PVA can be used as a promising carrier with uniform sustained release
characteristics.
Collapse
Affiliation(s)
- Ashish Katoch
- Chitkara College of Pharmacy, Chitkara University, Chandigarh Punjab,India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh Punjab,India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh Punjab,India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh Punjab,India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017,India
| | | |
Collapse
|
10
|
Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug. Int J Biol Macromol 2018; 115:907-919. [DOI: 10.1016/j.ijbiomac.2018.04.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|
11
|
Salehi Dashtebayaz MS, Nourbakhsh MS. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mohammad Sadegh Nourbakhsh
- Materials and Metallurgical Engineering, Central Administration of Semnan University, Semnan University, Semnan, Iran (the Islamic Republic of)
| |
Collapse
|
12
|
Qadri MF, Malviya R, Sharma PK. Biomedical Applications of Interpenetrating Polymer Network System. ACTA ACUST UNITED AC 2015. [DOI: 10.2174/1874844901502010021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interpenetrating polymer network (IPN) has been regarded as one of the novel technology in recent years showing the superior performances over the conventional techniques. This system is designed for the delivery of drugs at a predetermined rate and thus helps in controlled drug delivery. Due to its enhanced biological and physical characteristics like biodegradability, biocompatibility, solubility, specificity and stability, IPN has emerged out to be one of the excellent technologies in pharmaceutical industries. This article focuses mainly on the biomedical applications of IPN along with its future applicability in pharmaceutical research. It summarizes various aspects of IPN, biomedical applications and also in-cludes the different dosage forms based on IPN.
Collapse
|
13
|
Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. Int J Biol Macromol 2015; 75:133-43. [DOI: 10.1016/j.ijbiomac.2015.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/29/2022]
|
14
|
Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Deliv 2014; 12:669-88. [DOI: 10.1517/17425247.2014.974871] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. JOURNAL OF DRUG DELIVERY 2014; 2014:583612. [PMID: 24949205 PMCID: PMC4052081 DOI: 10.1155/2014/583612] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.
Collapse
Affiliation(s)
- Alka Lohani
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Garima Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| |
Collapse
|
16
|
Jana S, Sen KK, Basu SK. In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide. Int J Biol Macromol 2014; 65:241-5. [DOI: 10.1016/j.ijbiomac.2014.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/10/2014] [Accepted: 01/17/2014] [Indexed: 01/10/2023]
|