1
|
Drosou M, Bhattacharjee S, Pantazis DA. Combined Multireference-Multiscale Approach to the Description of Photosynthetic Reaction Centers. J Chem Theory Comput 2024; 20. [PMID: 39116215 PMCID: PMC11360140 DOI: 10.1021/acs.jctc.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
A first-principles description of the primary photochemical processes that drive photosynthesis and sustain life on our planet remains one of the grand challenges of modern science. Recent research established that explicit incorporation of protein electrostatics in excited-state calculations of photosynthetic pigments, achieved for example with quantum-mechanics/molecular-mechanics (QM/MM) approaches, is essential for a meaningful description of the properties and function of pigment-protein complexes. Although time-dependent density functional theory has been used productively so far in QM/MM approaches for the study of such systems, this methodology has limitations. Here we pursue for the first time a QM/MM description of the reaction center in the principal enzyme of oxygenic photosynthesis, Photosystem II, using multireference wave function theory for the high-level QM region. We identify best practices and establish guidelines regarding the rational choice of active space and appropriate state-averaging for the efficient and reliable use of complete active space self-consistent field (CASSCF) and the N-electron valence state perturbation theory (NEVPT2) in the prediction of low-lying excited states of chlorophyll and pheophytin pigments. Given that the Gouterman orbitals are inadequate as a minimal active space, we define specific minimal and extended active spaces for the NEVPT2 description of electronic states that fall within the Q and B bands. Subsequently, we apply our multireference-QM/MM protocol to the description of all pigments in the reaction center of Photosystem II. The calculations reproduce the electrochromic shifts induced by the protein matrix and the ordering of site energies consistent with the identity of the primary donor (ChlD1) and the experimentally known asymmetric and directional electron transfer. The optimized protocol sets the stage for future multireference treatments of multiple pigments, and hence for multireference studies of charge separation, while it is transferable to the study of any photoactive embedded tetrapyrrole system.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Cherepanov DA, Milanovsky GE, Neverov KV, Obukhov YN, Maleeva YV, Aybush AV, Kritsky MS, Nadtochenko VA. Exciton interactions of chlorophyll tetramer in water-soluble chlorophyll-binding protein BoWSCP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123847. [PMID: 38217986 DOI: 10.1016/j.saa.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The exciton interaction of four chlorophyll a (Chl a) molecules in a symmetrical tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP was analyzed in the pH range of 3-11. Exciton splitting ΔE = 232 ± 2 cm-1 of the Qy band of Chl a into two subcomponents with relative intensities of 78.1 ± 0.7 % and 21.9 ± 0.7 % was determined by a joint decomposition of the absorption and circular dichroism spectra into Gaussian functions. The exciton coupling parameters were calculated based on the BoWSCP atomic structure in three approximations: the point dipole model, the distributed atomic monopoles, and direct ab initio calculations in the TDDFT/PCM approximation. The Coulomb interactions of monomers were calculated within the continuum model using three values of optical permittivity. The models based on the properties of free Chl a in solution suffer from significant errors both in estimating the absolute value of the exciton interaction and in the relative intensity of exciton transitions. Calculations within the TDDFT/PCM approximation reproduce the experimentally determined parameters of the exciton splitting and the relative intensities of the exciton bands. The following factors of pigment-protein and pigment-pigment interactions were examined: deviation of the macrocycle geometry from the planar conformation of free Chl; the formation of hydrogen bonds between the macrocycle and water molecules; the overlap of wave functions of monomers at close distances. The most significant factor is the geometrical deformation of the porphyrin macrocycle, which leads to an increase in the dipole moment of Chl monomer from 5.5 to 6.9 D and to a rotation of the dipole moment by 15° towards the cyclopentane ring. The contributions of resonant charge-transfer states to the wave functions of the Chl dimer were determined and the transition dipole moments of the symmetric and antisymmetric charge-transfer states were estimated.
Collapse
Affiliation(s)
- D A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation.
| | - G E Milanovsky
- A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation
| | - K V Neverov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation; Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - Yu N Obukhov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - Yu V Maleeva
- Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - A V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation
| | - M S Kritsky
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; Department of Chemistry, Moscow State University, 119991 Moscow, Leninskye gory, 1b.3, Russian Federation
| |
Collapse
|
3
|
Ghosh R, Datta S, Mora AK, Modak B, Nath S, Palit DK. Dynamics of hydrogen bond reorganization in the S1(ππ*) state of 9-Anthracenecarboxaldehyde. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Srivastava R. Physicochemical, antioxidant properties of carotenoids and its optoelectronic and interaction studies with chlorophyll pigments. Sci Rep 2021; 11:18365. [PMID: 34526535 PMCID: PMC8443628 DOI: 10.1038/s41598-021-97747-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The physicochemical and antioxidant properties of seven carotenoids: antheraxanthin, β-carotene, neoxanthin, peridinin, violaxanthin, xanthrophyll and zeaxanthin were studied by theoretical means. Then the Optoelectronic properties and interaction of chlorophyll-carotenoid complexes are analysed by TDDFT and IGMPLOT. Global reactivity descriptors for carotenoids and chlorophyll (Chla, Chlb) are calculated via conceptual density functional theory (CDFT). The higher HOMO-LUMO (HL) gap indicated structural stability of carotenoid, chlorophyll and chlorophyll-carotenoid complexes. The chemical hardness for carotenoids and Chlorophyll is found to be lower in the solvent medium than in the gas phase. Results showed that carotenoids can be used as good reactive nucleophile due to lower µ and ω. As proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs), it is anticipated that direct antioxidant activity in these carotenoids is mainly due to the sequential proton loss electron transfer (SPLET) mechanism with dominant solvent effects. Also lower PAs of carotenoid suggest that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivities to transfer protons. Reaction rate constant with Transition-State Theory (TST) were estimated for carotenoid-Chlorophyll complexes in gas phase. Time dependent Density Functional Theory (TDDFT) showed that all the chlorophyll (Chla, Chlb)-carotenoid complexes show absorption wavelength in the visible region. The lower S1-T1 adiabatic energy gap indicated ISC transition from S1 to T1 state.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
5
|
Sirohiwal A, Neese F, Pantazis DA. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J Am Chem Soc 2020; 142:18174-18190. [PMID: 33034453 PMCID: PMC7582616 DOI: 10.1021/jacs.0c08526] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex that uses light-induced charge separation to power oxygenic photosynthesis. Its reaction center chromophores, where the charge transfer cascade is initiated, are arranged symmetrically along the D1 and D2 core polypeptides and comprise four chlorophyll (PD1, PD2, ChlD1, ChlD2) and two pheophytin molecules (PheoD1 and PheoD2). Evolution favored productive electron transfer only via the D1 branch, with the precise nature of primary excitation and the factors that control asymmetric charge transfer remaining under investigation. Here we present a detailed atomistic description for both. We combine large-scale simulations of membrane-embedded PSII with high-level quantum-mechanics/molecular-mechanics (QM/MM) calculations of individual and coupled reaction center chromophores to describe reaction center excited states. We employ both range-separated time-dependent density functional theory and the recently developed domain based local pair natural orbital (DLPNO) implementation of the similarity transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD), the first coupled cluster QM/MM calculations of the reaction center. We find that the protein matrix is exclusively responsible for both transverse (chlorophylls versus pheophytins) and lateral (D1 versus D2 branch) excitation asymmetry, making ChlD1 the chromophore with the lowest site energy. Multipigment calculations show that the protein matrix renders the ChlD1 → PheoD1 charge-transfer the lowest energy excitation globally within the reaction center, lower than any pigment-centered local excitation. Remarkably, no low-energy charge transfer states are located within the "special pair" PD1-PD2, which is therefore excluded as the site of initial charge separation in PSII. Finally, molecular dynamics simulations suggest that modulation of the electrostatic environment due to protein conformational flexibility enables direct excitation of low-lying charge transfer states by far-red light.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Sirohiwal A, Berraud-Pache R, Neese F, Izsák R, Pantazis DA. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J Phys Chem B 2020; 124:8761-8771. [PMID: 32930590 PMCID: PMC7584356 DOI: 10.1021/acs.jpcb.0c05761] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
ability to accurately compute low-energy excited states of
chlorophylls is critically important for understanding the vital roles
they play in light harvesting, energy transfer, and photosynthetic
charge separation. The challenge for quantum chemical methods arises
both from the intrinsic complexity of the electronic structure problem
and, in the case of biological models, from the need to account for
protein–pigment interactions. In this work, we report electronic
structure calculations of unprecedented accuracy for the low-energy
excited states in the Q and B bands of chlorophyll a. This is achieved by using the newly developed domain-based local
pair natural orbital (DLPNO) implementation of the similarity transformed
equation of motion coupled cluster theory with single and double excitations
(STEOM-CCSD) in combination with sufficiently large and flexible basis
sets. The results of our DLPNO–STEOM-CCSD calculations are
compared with more approximate approaches. The results demonstrate
that, in contrast to time-dependent density functional theory, the
DLPNO–STEOM-CCSD method provides a balanced performance for
both absorption bands. In addition to vertical excitation energies,
we have calculated the vibronic spectrum for the Q and B bands through
a combination of DLPNO–STEOM-CCSD and ground-state density
functional theory frequency calculations. These results serve as a
basis for comparison with gas-phase experiments.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Romain Berraud-Pache
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Schelter I, Foerster JM, Gardiner AT, Roszak AW, Cogdell RJ, Ullmann GM, de Queiroz TB, Kümmel S. Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2. J Chem Phys 2019; 151:134114. [DOI: 10.1063/1.5116779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| | - Johannes M. Foerster
- Theoretical Physics IV and Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Aleksander W. Roszak
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
DFT and TD-DFT Studies of Mg-Substitution in Chlorophyll by Cr(II), Fe(II) and Ni(II). CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0003-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Wellman SMJ, Jockusch RA. Tuning the Intrinsic Photophysical Properties of Chlorophylla. Chemistry 2017; 23:7728-7736. [DOI: 10.1002/chem.201605167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sydney M. J. Wellman
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Rebecca A. Jockusch
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
10
|
Bechaieb R, Ben Akacha A, Gérard H. Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bechaieb R, Fredj AB, Akacha AB, Gérard H. Interactions of copper(ii) and zinc(ii) with chlorophyll: insights from density functional theory studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj03244j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most favored reaction of chlorophyll is computed to be substitution for Cu2+ and peripheral chelation for Zn2+.
Collapse
Affiliation(s)
- Rim Bechaieb
- Université de Tunis el Manar
- Faculté des Science de Tunis
- Laboratoire de Spectroscopie Atomique
- Moléculaire et Applications -LSAMA
- 1060 Tunis
| | - Arij B. Fredj
- Université de Tunis el Manar
- Faculté des Science de Tunis
- Laboratoire de Spectroscopie Atomique
- Moléculaire et Applications -LSAMA
- 1060 Tunis
| | - Azaiez B. Akacha
- Université de Tunis el Manar
- Faculté des Sciences de Tunis
- Département de chimie
- Laboratoire de Synthèse Organique et Hétérocyclique
- 2092 Tunis
| | - Hélène Gérard
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 7616
- Laboratoire de Chimie Théorique
- Paris
| |
Collapse
|
12
|
Abstract
David Craig (1919–2015) left us with a lasting legacy concerning basic understanding of chemical spectroscopy and bonding. This is expressed in terms of some of the recent achievements of my own research career, with a focus on integration of Craig’s theories with those of Noel Hush to solve fundamental problems in photosynthesis, molecular electronics (particularly in regard to the molecules synthesized by Maxwell Crossley), and self-assembled monolayer structure and function. Reviewed in particular is the relation of Craig’s legacy to: the 50-year struggle to assign the visible absorption spectrum of arguably the world’s most significant chromophore, chlorophyll; general theories for chemical bonding and structure extending Hush’s adiabatic theory of electron-transfer processes; inelastic electron-tunnelling spectroscopy (IETS); chemical quantum entanglement and the Penrose–Hameroff model for quantum consciousness; synthetic design strategies for NMR quantum computing; Gibbs free-energy measurements and calculations for formation and polymorphism of organic self-assembled monolayers on graphite surfaces from organic solution; and understanding the basic chemical processes involved in the formation of gold surfaces and nanoparticles protected by sulfur-bound ligands, ligands whose form is that of Au0-thiyl rather than its commonly believed AuI-thiolate tautomer.
Collapse
|
13
|
Etinski M, Petković M, Ristić MM, Marian CM. Electron–Vibrational Coupling and Fluorescence Spectra of Tetra-, Penta-, and Hexacoordinated Chlorophylls c1 and c2. J Phys Chem B 2015; 119:10156-69. [DOI: 10.1021/acs.jpcb.5b05079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihajlo Etinski
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milena Petković
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Miroslav M. Ristić
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Christel M. Marian
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Reimers JR, Cai ZL, Kobayashi R, Rätsep M, Freiberg A, Krausz E. Formation of water–chlorophyll clusters in dilute samples of chlorophyll-a in ether at low temperature. Phys Chem Chem Phys 2014; 16:2323-30. [PMID: 24352346 DOI: 10.1039/c3cp53729c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jeffrey R Reimers
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Reimers JR, Cai ZL, Kobayashi R, Rätsep M, Freiberg A, Krausz E. Assignment of the Q-bands of the chlorophylls: coherence loss via Qx - Qy mixing. Sci Rep 2013; 3:2761. [PMID: 24067303 PMCID: PMC3783888 DOI: 10.1038/srep02761] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/03/2013] [Indexed: 01/12/2023] Open
Abstract
We provide a new and definitive spectral assignment for the absorption, emission, high-resolution fluorescence excitation, linear dichroism, and/or magnetic circular dichroism spectra of 32 chlorophyllides in various environments. This encompases all data used to justify previous assignments and provides a simple interpretation of unexplained complex decoherence phenomena associated with Qx → Qy relaxation. Whilst most chlorophylls conform to the Gouterman model and display two independent transitions Qx (S2) and Qy (S1), strong vibronic coupling inseparably mixes these states in chlorophyll-a. This spreads x-polarized absorption intensity over the entireQ-band system to influence all exciton-transport, relaxation and coherence properties of chlorophyll-based photosystems. The fraction of the total absorption intensity attributed to Qx ranges between 7% and 33%, depending on chlorophyllide and coordination, and is between 10% and 25% for chlorophyll-a. CAM-B3LYP density-functional-theory calculations of the band origins, relative intensities, vibrational Huang-Rhys factors, and vibronic coupling strengths fully support this new assignment.
Collapse
|
16
|
Affiliation(s)
- Yaqiong Li
- School of
Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Zheng-Li Cai
- School of Physics, University of New South Wales, NSW 2052, Australia
| | - Min Chen
- School of
Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Excited-State Hydrogen Bonding Dynamics of Hydrogen-Bonded Clusters Formed by of Coumarin Derivatives in Aqueous Solution: A Time-Dependent Density Functional Theory Study. J CLUST SCI 2012. [DOI: 10.1007/s10876-012-0466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Yamijala SRKCS, Periyasamy G, Pati SK. Computational Studies on Structural and Excited-State Properties of Modified Chlorophyll f with Various Axial Ligands. J Phys Chem A 2011; 115:12298-306. [DOI: 10.1021/jp2041235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- SRKC Sharma Yamijala
- Chemistry and Physics of Material Unit, ‡Theoretical Sciences Unit, §New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560 064, India
| | - Ganga Periyasamy
- Chemistry and Physics of Material Unit, ‡Theoretical Sciences Unit, §New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560 064, India
| | - Swapan K Pati
- Chemistry and Physics of Material Unit, ‡Theoretical Sciences Unit, §New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560 064, India
| |
Collapse
|
19
|
Rätsep M, Cai ZL, Reimers JR, Freiberg A. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys 2011; 134:024506. [DOI: 10.1063/1.3518685] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Aittala PJ, Cramariuc O, Hukka TI. Electric-Field-Assisted Electron Transfer in a Porphine−Quinone Complex: A Theoretical Study. J Chem Theory Comput 2010; 6:805-16. [DOI: 10.1021/ct9003417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pekka J. Aittala
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland, Department of Physics, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland, and IT Center for Science and Technology, Av. Radu Beller 25, Bucharest, Romania
| | | | - Terttu I. Hukka
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland, Department of Physics, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland, and IT Center for Science and Technology, Av. Radu Beller 25, Bucharest, Romania
| |
Collapse
|
21
|
Oviedo MB, Negre CFA, Sánchez CG. Dynamical simulation of the optical response of photosynthetic pigments. Phys Chem Chem Phys 2010; 12:6706-11. [DOI: 10.1039/b926051j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Rätsep M, Linnanto J, Freiberg A. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a. J Chem Phys 2009; 130:194501. [DOI: 10.1063/1.3125183] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Rocca D, Gebauer R, Saad Y, Baroni S. Turbo charging time-dependent density-functional theory with Lanczos chains. J Chem Phys 2008; 128:154105. [DOI: 10.1063/1.2899649] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dario Rocca
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy
- CNR-INFM DEMOCRITOS Theory@Elettra Group, I-34014 Trieste, Italy
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34014 Trieste, Italy
- CNR-INFM DEMOCRITOS Theory@Elettra Group, I-34014 Trieste, Italy
| | - Yousef Saad
- Department of Computer Science and Engineering, University of Minnesota, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455, USA
| | - Stefano Baroni
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy
- CNR-INFM DEMOCRITOS Theory@Elettra Group, I-34014 Trieste, Italy
| |
Collapse
|
25
|
Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD. Density functional theory for charge transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B 2007; 110:15624-32. [PMID: 16884287 DOI: 10.1021/jp063376t] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While density functional theory (DFT) has been proven to be extremely useful for the prediction of thermodynamic and spectroscopic properties of molecules, to date most functionals used in common implementations of DFT display a systematic failure to predict the properties of charge-transfer processes. While this is explicitly manifest in Rydberg transitions of atoms and molecules and in molecular charge-transfer spectroscopy, it also becomes critical for systems containing extended conjugation such as polyenes and other conducting polymers, porphyrins, chlorophylls, etc. A new density functional, a Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP), has recently been developed specifically to overcome these limitations, and it has been shown to properly predict molecular charge-transfer spectra. Here, we demonstrate that it predicts qualitatively reasonable spectra for porphyrin, some oligoporphyrins, and chlorophyll. However, alternate density functionals developed to overcome the same limitations such as current-density functional theory are shown, in their present implementation, to remain inadequate. The CAM-B3LYP results are shown to be in excellent agreement with complete-active-space plus second-order Møller-Plesset perturbation theory and symmetry-adapted cluster configuration interaction calculations: These depict the N and higher bands of porphyrins and chlorophylls as being charge-transfer bands associated with localization of molecular orbitals on individual pyrrole rings. The validity of the basic Gouterman model for the spectra of porphyrins and chlorophylls is confirmed, rejecting modern suggestions that non-Gouterman transitions lie close in energy to the Q-bands of chlorophylls. As porphyrins and chlorophylls provide useful paradigms for problems involving extended conjugation, the results obtained suggest that many significant areas of nanotechnology and biotechnology may now be realistically treated by cost-effective density-functional-based computational methods.
Collapse
Affiliation(s)
- Zheng-Li Cai
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
26
|
Yin S, Dahlbom MG, Canfield PJ, Hush NS, Kobayashi R, Reimers JR. Assignment of the Qy absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. J Phys Chem B 2007; 111:9923-30. [PMID: 17672486 DOI: 10.1021/jp070030p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Qy absorption spectrum of Photosystem-I from Thermosynecochoccus elongatus (formerly Synecochoccus elongatus) is calculated using the CAM-B3LYP density functional and INDO schemes based on a quantum-mechanically refined structure for the entire photosystem obtained using the PW91 density functional. These methods present a priori predictions of the absorption and linear dichroism spectra and include protein electrostatic effects, short range inductive effects, long-range and short-range exciton couplings, and superexchange effects involving aromatic residues and carotenes. CAM-B3LYP is used as it is the only known density functional that correctly describes the Q bands of chlorophylls, all other methods contaminating them with erroneous charge-transfer excitations. A critical feature is found to be the use of fully optimized heavy-atom coordinates, with those obtained from just X-ray crystallography providing a poor description of the electronic properties of the chromophores. The result is a realistic first-principles prediction of the observed absorption band that identifies the nature of the red-shifted chlorophylls as well as the energies of the reaction-center chlorophylls and the exciton couplings acting between them. The "special pair" appears more like a dimer of dimers than a self-contained functional unit, with the exciton couplings between its members and the accessory chlorophylls exceeding the internal coupling.
Collapse
Affiliation(s)
- Shiwei Yin
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Leiger K, Freiberg A, Dahlbom MG, Hush NS, Reimers JR. Pressure-induced spectral changes for the special-pair radical cation of the bacterial photosynthetic reaction center. J Chem Phys 2007; 126:215102. [PMID: 17567219 DOI: 10.1063/1.2739513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of pressure up to 6 kbars on the near to mid infrared absorption spectrum (7500-14,300 cm(-1) or 1333-700 nm) of the oxidized reaction center of Rhodobacter sphaeroides is measured and interpreted using density-functional B3LYP, INDO, and PM5 calculations. Two weak electronic transition origins at approximately 8010 and approximately 10,210 cm(-1) are unambiguously identified. The first transition is assigned to a Qy tripdoublet band that involves, in the localized description of the excitation, a triplet absorption on one of the bacteriochlorophyll molecules (PM) in the reaction center's special pair intensified by the presence of a radical cation on the other (PL). While most chlorophyll transition energies decrease significantly with increasing pressure, the tripdoublet band is found to be almost pressure insensitive. This difference is attributed to the additional increase in the tripdoublet-band energy accompanying compression of the pi-stacked special pair. The second band could either be the anticipated second Qy tripdoublet state, a Qx tripdoublet state, or a state involving excitation from a low-lying doubly occupied orbital to the half-occupied cationic orbital. A variety of absorption bands that are also resolved in the 8300-9600 cm(-1) region are assigned as vibrational structure associated with the first tripdoublet absorption. These sidebands are composites that are shown by the calculations to comprise many unresolved individual modes; while the calculated pressure sensitivity of each individual mode is small, the calculated pressure dependence of the combined sideband structure is qualitatively similar to the observed pressure dependence, preventing the positive identification of possible additional electronic transitions in this spectral region.
Collapse
Affiliation(s)
- Kristjan Leiger
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | | | | | | | | |
Collapse
|
28
|
Reimers JR, Solomon GC, Gagliardi A, Bilić A, Hush NS, Frauenheim T, Di Carlo A, Pecchia A. The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction. J Phys Chem A 2007; 111:5692-702. [PMID: 17530826 DOI: 10.1021/jp070598y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A review is presented of the nonequilibrium Green's function (NEGF) method "gDFTB" for evaluating elastic and inelastic conduction through single molecules employing the density functional tight-binding (DFTB) electronic structure method. This focuses on the possible advantages that DFTB implementations of NEGF have over conventional methods based on density functional theory, including not only the ability to treat large irregular metal-molecule junctions with high nonequilibrium thermal distributions but perhaps also the ability to treat dispersive forces, bond breakage, and open-shell systems and to avoid large band lineup errors. New results are presented indicating that DFTB provides a useful depiction of simple gold-thiol interactions. Symmetry is implemented in DFTB, and the advantages it brings in terms of large savings of computational resources with significant increase in numerical stability are described. The power of DFTB is then harnessed to allow the use of gDFTB as a real-time tool to discover the nature of the forces that control inelastic charge transport through molecules and the role of molecular symmetry in determining both elastic and inelastic transport. Future directions for the development of the method are discussed.
Collapse
|
29
|
Wormit M, Dreuw A. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. Phys Chem Chem Phys 2007; 9:2917-31. [PMID: 17551615 DOI: 10.1039/b703028b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.
Collapse
Affiliation(s)
- Michael Wormit
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
30
|
Heimdal J, Jensen KP, Devarajan A, Ryde U. The role of axial ligands for the structure and function of chlorophylls. J Biol Inorg Chem 2006; 12:49-61. [PMID: 16953415 DOI: 10.1007/s00775-006-0164-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
We have studied the effect of axial ligation of chlorophyll and bacteriochlorophyll using density functional calculations. Eleven different axial ligands have been considered, including models of histidine, aspartate/glutamate, asparagine/glutamine, serine, tyrosine, methionine, water, the protein backbone, and phosphate. The native chlorophylls, as well as their cation and anion radical states and models of the reaction centres P680 and P700, have been studied and we have compared the geometries, binding energies, reduction potentials, and absorption spectra. Our results clearly show that the chlorophylls strongly prefer to be five-coordinate, in accordance with available crystal structures. The axial ligands decrease the reduction potentials, so they cannot explain the high potential of P680. They also redshift the Q band, but not enough to explain the occurrence of red chlorophylls. However, there is some relation between the axial ligands and their location in the various photosynthetic proteins. In particular, the intrinsic reduction potential of the second molecule in the electron transfer path is always lower than that of the third one, a feature that may prevent back-transfer of the electron.
Collapse
Affiliation(s)
- Jimmy Heimdal
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, 221 00, Lund, Sweden
| | | | | | | |
Collapse
|