Rayment MH, Hogan SD. Quantum-state-dependent decay rates of electrostatically trapped Rydberg NO molecules.
Phys Chem Chem Phys 2021;
23:18806-18822. [PMID:
34612419 PMCID:
PMC8900602 DOI:
10.1039/d1cp01930a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) molecules travelling in pulsed supersonic beams have been prepared in long-lived Rydberg-Stark states by resonance-enhanced two-colour two-photon excitation from the X 2Π1/2 (v'' = 0, J'' = 3/2) ground state, through the A 2Σ+ (v' = 0, N' = 0, J' = 1/2) intermediate state. These excited molecules were decelerated from 795 ms-1 to rest in the laboratory-fixed frame of reference, in the travelling electric traps of a transmission-line Rydberg-Stark decelerator. The decelerator was operated at 30 K to minimise effects of blackbody radiation on the molecules during deceleration and trapping. The molecules were electrostatically trapped for times of up to 1 ms, and detected in situ by pulsed electric field ionisation. Measurements of the rate of decay from the trap were performed for states with principal quantum numbers between n = 32 and 50, in Rydberg series converging to the N+= 0, 1, and 2 rotational states of NO+. For the range of Rydberg states studied, the measured decay times of between 200 μs and 400 μs were generally observed to reduce as the value of n was increased. For some particular values of n deviations from this trend were seen. These observations are interpreted, with the aid of numerical calculations, to arise as a result of contributions to the decay rates, on the order of 1 kHz, from rotational and vibrational channel interactions. These results shed new light on the role of weak intramolecular interactions on the slow decay of long-lived Rydberg states in NO.
Collapse