1
|
Ieritano C, Hopkins WS. The hitchhiker's guide to dynamic ion-solvent clustering: applications in differential ion mobility spectrometry. Phys Chem Chem Phys 2022; 24:20594-20615. [PMID: 36000315 DOI: 10.1039/d2cp02540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the fundamentals of ion-solvent clustering processes that are pertinent to understanding an ion's behaviour during differential mobility spectrometry (DMS) experiments. We contrast DMS with static-field ion mobility, where separation is affected by mobility differences under the high-field and low-field conditions of an asymmetric oscillating electric field. Although commonly used in mass spectrometric (MS) workflows to enhance signal-to-noise ratios and remove isobaric contaminants, the chemistry and physics that underpins the phenomenon of differential mobility has yet to be fully fleshed out. Moreover, we are just now making progress towards understanding how the DMS separation waveform creates a dynamic clustering environment when the carrier gas is seeded with the vapour of a volatile solvent molecule (e.g., methanol). Interestingly, one can correlate the dynamic clustering behaviour observed in DMS experiments with gas-phase and solution-phase molecular properties such as hydrophobicity, acidity, and solubility. However, to create a generalized, global model for property determination using DMS data one must employ machine learning. In this article, we provide a first-principles description of differential ion mobility in a dynamic clustering environment. We then discuss the correlation between dynamic clustering propensity and analyte physicochemical properties and demonstrate that analytes exhibiting similar ion-solvent interactions (e.g., charge-dipole) follow well-defined trends with respect to DMS clustering behaviour. Finally, we describe how supervised machine learning can be used to create predictive models of molecular properties using DMS data. We additionally highlight open questions in the field and provide our perspective on future directions that can be explored.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
2
|
Coughlan NJA, Stockett MH, Kjær C, Ashworth EK, Bulman Page PC, Meech SR, Brøndsted Nielsen S, Blancafort L, Hopkins WS, Bull JN. Action spectroscopy of the isolated red Kaede fluorescent protein chromophore. J Chem Phys 2021; 155:124304. [PMID: 34598549 DOI: 10.1063/5.0063258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Incorporation of fluorescent proteins into biochemical systems has revolutionized the field of bioimaging. In a bottom-up approach, understanding the photophysics of fluorescent proteins requires detailed investigations of the light-absorbing chromophore, which can be achieved by studying the chromophore in isolation. This paper reports a photodissociation action spectroscopy study on the deprotonated anion of the red Kaede fluorescent protein chromophore, demonstrating that at least three isomers-assigned to deprotomers-are generated in the gas phase. Deprotomer-selected action spectra are recorded over the S1 ← S0 band using an instrument with differential mobility spectrometry coupled with photodissociation spectroscopy. The spectrum for the principal phenoxide deprotomer spans the 480-660 nm range with a maximum response at ≈610 nm. The imidazolate deprotomer has a blue-shifted action spectrum with a maximum response at ≈545 nm. The action spectra are consistent with excited state coupled-cluster calculations of excitation wavelengths for the deprotomers. A third gas-phase species with a distinct action spectrum is tentatively assigned to an imidazole tautomer of the principal phenoxide deprotomer. This study highlights the need for isomer-selective methods when studying the photophysics of biochromophores possessing several deprotonation sites.
Collapse
Affiliation(s)
- Neville J A Coughlan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Philip C Bulman Page
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen R Meech
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - Lluís Blancafort
- Institut de Química Computacional i Catálisi and Departament de Química, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Heldmaier FV, Coughlan NJA, Haack A, Huard R, Guna M, Schneider BB, Le Blanc JCY, Campbell JL, Nooijen M, Hopkins WS. UVPD spectroscopy of differential mobility-selected prototropic isomers of protonated adenine. Phys Chem Chem Phys 2021; 23:19892-19900. [PMID: 34525152 DOI: 10.1039/d1cp02688g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two prototropic isomers of adenine are formed in an electrospray ion source and are resolved spatially in a differential mobility spectrometer before detection in a triple quadrupole mass spectrometer. Each isomer is gated in CV space before being trapped in the linear ion trap of the modified mass spectrometer, where they are irradiated by the tuneable output of an optical parametric oscillator and undergo photodissociation to form charged fragments with m/z 119, 109, and 94. The photon-normalised intensity of each fragmentation channel is measured and the action spectra for each DMS-gated tautomer are obtained. Our analysis of the action spectra, aided by calculated vibronic spectra and thermochemical data, allow us to assign the two signals in our measured ionograms to specific tautomers of protonated adenine.
Collapse
Affiliation(s)
- Fiorella Villanueva Heldmaier
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Neville J A Coughlan
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Alexander Haack
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Rebecca Huard
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mircea Guna
- SCIEX, Four Valley Drive, Concord, Ontario, L4K 4V8, Canada
| | | | | | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Bedrock Scientific Inc., Milton, Ontario, Canada
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, Hong Kong Science Park, New Territories, Hong Kong.,Watermine Innovation, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Calabrese C, Temelso B, Usabiaga I, Seifert NA, Basterretxea FJ, Prampolini G, Shields GC, Pate BH, Evangelisti L, Cocinero EJ. The Role of Non-Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane. Angew Chem Int Ed Engl 2021; 60:16894-16899. [PMID: 34028158 PMCID: PMC8362204 DOI: 10.1002/anie.202103900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Indexed: 01/30/2023]
Abstract
The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.
Collapse
Affiliation(s)
- Camilla Calabrese
- Departament of Physical ChemistryUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N48940LeioaSpain
- Instituto Biofisika (UPV/EHU, CSIC)48940LeioaSpain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)48940LeioaSpain
| | - Berhane Temelso
- George Mason UniversityInformation Technology ServicesFairfaxVA22030USA
| | - Imanol Usabiaga
- Departament of Physical ChemistryUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N48940LeioaSpain
- Instituto Biofisika (UPV/EHU, CSIC)48940LeioaSpain
- Dipartimento di Chimica “Giacomo Ciamician”Università degli Studi di Bolognavia S. Alberto 16348100RavennaItaly
| | - Nathan A. Seifert
- Department of ChemistryUniversity of VirginiaMcCormick RoadCharlottesvilleVA22903USA
| | - Francisco J. Basterretxea
- Departament of Physical ChemistryUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N48940LeioaSpain
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)Area della Ricercavia G. Moruzzi 156124PisaItaly
| | | | - Brooks H. Pate
- Department of ChemistryUniversity of VirginiaMcCormick RoadCharlottesvilleVA22903USA
| | - Luca Evangelisti
- Dipartimento di Chimica “Giacomo Ciamician”Università degli Studi di Bolognavia S. Alberto 16348100RavennaItaly
| | - Emilio J. Cocinero
- Departament of Physical ChemistryUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N48940LeioaSpain
- Instituto Biofisika (UPV/EHU, CSIC)48940LeioaSpain
| |
Collapse
|
5
|
Calabrese C, Temelso B, Usabiaga I, Seifert NA, Basterretxea FJ, Prampolini G, Shields GC, Pate BH, Evangelisti L, Cocinero EJ. The Role of Non‐Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Camilla Calabrese
- Departament of Physical Chemistry University of the Basque Country (UPV/EHU) Barrio Sarriena, S/N 48940 Leioa Spain
- Instituto Biofisika (UPV/EHU, CSIC) 48940 Leioa Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) 48940 Leioa Spain
| | - Berhane Temelso
- George Mason University Information Technology Services Fairfax VA 22030 USA
| | - Imanol Usabiaga
- Departament of Physical Chemistry University of the Basque Country (UPV/EHU) Barrio Sarriena, S/N 48940 Leioa Spain
- Instituto Biofisika (UPV/EHU, CSIC) 48940 Leioa Spain
- Dipartimento di Chimica “Giacomo Ciamician” Università degli Studi di Bologna via S. Alberto 163 48100 Ravenna Italy
| | - Nathan A. Seifert
- Department of Chemistry University of Virginia McCormick Road Charlottesville VA 22903 USA
| | - Francisco J. Basterretxea
- Departament of Physical Chemistry University of the Basque Country (UPV/EHU) Barrio Sarriena, S/N 48940 Leioa Spain
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR) Area della Ricerca via G. Moruzzi 1 56124 Pisa Italy
| | | | - Brooks H. Pate
- Department of Chemistry University of Virginia McCormick Road Charlottesville VA 22903 USA
| | - Luca Evangelisti
- Dipartimento di Chimica “Giacomo Ciamician” Università degli Studi di Bologna via S. Alberto 163 48100 Ravenna Italy
| | - Emilio J. Cocinero
- Departament of Physical Chemistry University of the Basque Country (UPV/EHU) Barrio Sarriena, S/N 48940 Leioa Spain
- Instituto Biofisika (UPV/EHU, CSIC) 48940 Leioa Spain
| |
Collapse
|
6
|
Ieritano C, Rickert D, Featherstone J, Honek JF, Campbell JL, Blanc JCYL, Schneider BB, Hopkins WS. The Charge-State and Structural Stability of Peptides Conferred by Microsolvating Environments in Differential Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:956-968. [PMID: 33733774 DOI: 10.1021/jasms.0c00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of solvent vapor in a differential mobility spectrometry (DMS) cell creates a microsolvating environment that can mitigate complications associated with field-induced heating. In the case of peptides, the microsolvation of protonation sites results in a stabilization of charge density through localized solvent clustering, sheltering the ion from collisional activation. Seeding the DMS carrier gas (N2) with a solvent vapor prevented nearly all field-induced fragmentation of the protonated peptides GGG, AAA, and the Lys-rich Polybia-MP1 (IDWKKLLDAAKQIL-NH2). Modeling the microsolvation propensity of protonated n-propylamine [PrNH3]+, a mimic of the Lys side chain and N-terminus, with common gas-phase modifiers (H2O, MeOH, EtOH, iPrOH, acetone, and MeCN) confirms that all solvent molecules form stable clusters at the site of protonation. Moreover, modeling populations of microsolvated clusters indicates that species containing protonated amine moieties exist as microsolvated species with one to six solvent ligands at all effective ion temperatures (Teff) accessible during a DMS experiment (ca. 375-600 K). Calculated Teff of protonated GGG, AAA, and Polybia-MPI using a modified two-temperature theory approach were up to 86 K cooler in DMS environments seeded with solvent vapor compared to pure N2 environments. Stabilizing effects were largely driven by an increase in the ion's apparent collision cross section and by evaporative cooling processes induced by the dynamic evaporation/condensation cycles incurred in the presence of an oscillating electric separation field. When the microsolvating partner was a protic solvent, abstraction of a proton from [MP1 + 3H]3+ to yield [MP1 + 2H]2+ was observed. This result was attributed to the proclivity of protic solvents to form hydrogen-bond networks with enhanced gas-phase basicity. Collectively, microsolvation provides analytes with a solvent "air bag," whereby charge reduction and microsolvation-induced stabilization were shown to shelter peptides from the fragmentation induced by field heating and may play a role in preserving native-like ion configurations.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Joshua Featherstone
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Bedrock Scientific, Milton L6T 6J9, Ontario, Canada
| | | | | | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
7
|
Brown OCF, Vrinceanu D, Kharchenko V, Sadeghpour HR. Formation of argon cluster with proton seeding. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1767813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- O. C. F. Brown
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
- Department of Physics and Astronomy, University of Southampton, Southampton, UK
| | - D. Vrinceanu
- Department of Physics, Texas Southern University, Houston, TX, USA
| | - V. Kharchenko
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
- Department of Physics, University of Connecticut, Storrs, CT, USA
| | - H. R. Sadeghpour
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| |
Collapse
|
8
|
Marlton SJP, McKinnon BI, Ucur B, Bezzina JP, Blanksby SJ, Trevitt AJ. Discrimination between Protonation Isomers of Quinazoline by Ion Mobility and UV-Photodissociation Action Spectroscopy. J Phys Chem Lett 2020; 11:4226-4231. [PMID: 32368922 DOI: 10.1021/acs.jpclett.0c01009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of oriented electric fields on chemical reactivity and photochemistry is an area of increasing interest. Within a molecule, different protonation sites offer the opportunity to control the location of charge and thus orientation of electric fields. New techniques are thus needed to discriminate between protonation isomers in order to understand this effect. This investigation reports the UV-photodissociation action spectroscopy of two protonation isomers (protomers) of 1,3-diazanaphthalene (quinazoline) arising from protonation of a nitrogen at either the 1- or 3-position. It is shown that these protomers are separable by field-asymmetric ion mobility spectrometry (FAIMS) with confirmation provided by UV-photodissociation (PD) action spectroscopy. Vibronic features in the UVPD action spectra and computational input allow assignment of the origin transitions to the S1 and S5 states of both protomers. These experiments also provide vital benchmarks for protomer-specific calculations and examination of isomer-resolved reaction kinetics and thermodynamics.
Collapse
Affiliation(s)
- Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - James P Bezzina
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane 4001, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
Coughlan NJA, Carr PJJ, Walker SC, Zhou C, Guna M, Campbell JL, Hopkins WS. Measuring Electronic Spectra of Differential Mobility-Selected Ions in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:405-410. [PMID: 32031386 DOI: 10.1021/jasms.9b00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe the modification of a commercially available tandem differential mobility mass spectrometer (DMS) that has been retrofitted to facilitate photodissociation (PD) of differential mobility-separated, mass-selected molecular ions. We first show that a mixture of protonated quinoline/isoquinoline (QH+/iQH+) can be separated using differential mobility spectrometry. Efficient separation is facilitated by addition of methanol to the DMS environment and increased residence time within the DMS. In action spectroscopy experiments, we gate each isomer using appropriate DMS settings, trap the ions in the third quadrupole of a triple quadrupole mass spectrometer, and irradiate them with tunable light from an optical parametric oscillator (OPO). The resulting mass spectra are recorded as the OPO wavelength is scanned, giving PD action spectra. We compare our PD spectra with previously recorded spectra for the same species and show that our instrument reproduces previous works faithfully.
Collapse
Affiliation(s)
- Neville J A Coughlan
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Patrick J J Carr
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Stephen C Walker
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Ce Zhou
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Mircea Guna
- SCIEX , Four Valley Drive , Concord , ON L4K 4V8 , Canada
| | - J Larry Campbell
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
- SCIEX , Four Valley Drive , Concord , ON L4K 4V8 , Canada
| | - W Scott Hopkins
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| |
Collapse
|
10
|
Carr PJJ, Warneke J, Featherstone J, Jenne C, Loire E, Hopkins WS. The structure of proton-bound Triethylammonia (X = F, Cl) Clusters. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1595203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Jonas Warneke
- Department of Chemistry, Purdue University, West Lafayette, USA
| | | | - Carsten Jenne
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Estelle Loire
- CLIO/LCP Bat. 201, Porte 2, Université Paris-Sud 11, Orsay, France
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo Canada
| |
Collapse
|
11
|
Coughlan NJA, Liu C, Lecours MJ, Campbell JL, Hopkins WS. Preferential Ion Microsolvation in Mixed-Modifier Environments Observed Using Differential Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2222-2227. [PMID: 31529402 DOI: 10.1007/s13361-019-02332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The preferential solvation behavior for eight different derivatives of protonated quinoline was measured in a tandem differential mobility spectrometer mass spectrometer (DMS-MS). Ion-solvent cluster formation was induced in the DMS by the addition of chemical modifiers (i.e., solvent vapors) to the N2 buffer gas. To determine the effect of more than one modifier in the DMS environment, we performed DMS experiments with varying mixtures of water, acetonitrile, and isopropyl alcohol solvent vapors. The results show that doping the buffer gas with a binary mixture of modifiers leads to the ions binding preferentially to one modifier over another. We used density functional theory to calculate the ion-solvent binding energies, and in all cases, calculations show that the quinolinium ions bind most strongly with acetonitrile, then isopropyl alcohol, and most weakly with water. Computational results support the hypothesis that the quinolinium ions bind exclusively to whichever solvent they have the strongest interaction with, regardless of the presence of other modifier gases.
Collapse
Affiliation(s)
- Neville J A Coughlan
- Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Chang Liu
- SCIEX, Four Valley Dr., Concord, ON, L4K 4V8, Canada
| | - Michael J Lecours
- Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
- SCIEX, Four Valley Dr., Concord, ON, L4K 4V8, Canada.
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
12
|
Zhou C, Ieritano C, Hopkins WS. Augmenting Basin-Hopping With Techniques From Unsupervised Machine Learning: Applications in Spectroscopy and Ion Mobility. Front Chem 2019; 7:519. [PMID: 31440497 PMCID: PMC6693329 DOI: 10.3389/fchem.2019.00519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Evolutionary algorithms such as the basin-hopping (BH) algorithm have proven to be useful for difficult non-linear optimization problems with multiple modalities and variables. Applications of these algorithms range from characterization of molecular states in statistical physics and molecular biology to geometric packing problems. A key feature of BH is the fact that one can generate a coarse-grained mapping of a potential energy surface (PES) in terms of local minima. These results can then be utilized to gain insights into molecular dynamics and thermodynamic properties. Here we describe how one can employ concepts from unsupervised machine learning to augment BH PES searches to more efficiently identify local minima and the transition states connecting them. Specifically, we introduce the concepts of similarity indices, hierarchical clustering, and multidimensional scaling to the BH methodology. These same machine learning techniques can be used as tools for interpreting and rationalizing experimental results from spectroscopic and ion mobility investigations (e.g., spectral assignment, dynamic collision cross sections). We exemplify this in two case studies: (1) assigning the infrared multiple photon dissociation spectrum of the protonated serine dimer and (2) determining the temperature-dependent collision cross-section of protonated alanine tripeptide.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
13
|
Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:399-404. [PMID: 30421840 DOI: 10.1002/rcm.8347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
14
|
Hopkins WS. Dynamic Clustering and Ion Microsolvation. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Determining molecular properties with differential mobility spectrometry and machine learning. Nat Commun 2018; 9:5096. [PMID: 30504922 PMCID: PMC6269546 DOI: 10.1038/s41467-018-07616-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/06/2018] [Indexed: 01/30/2023] Open
Abstract
The fast and accurate determination of molecular properties is highly desirable for many facets of chemical research, particularly in drug discovery where pre-clinical assays play an important role in paring down large sets of drug candidates. Here, we present the use of supervised machine learning to treat differential mobility spectrometry - mass spectrometry data for ten topological classes of drug candidates. We demonstrate that the gas-phase clustering behavior probed in our experiments can be used to predict the candidates' condensed phase molecular properties, such as cell permeability, solubility, polar surface area, and water/octanol distribution coefficient. All of these measurements are performed in minutes and require mere nanograms of each drug examined. Moreover, by tuning gas temperature within the differential mobility spectrometer, one can fine tune the extent of ion-solvent clustering to separate subtly different molecular geometries and to discriminate molecules of very similar physicochemical properties.
Collapse
|
16
|
De Vlugt IJS, Lecours MJ, Carr PJJ, Anwar A, Marta RA, Fillion E, Steinmetz V, Hopkins WS. Infrared-Driven Charge-Transfer in Transition Metal-Containing B12X122– (X = H, F) Clusters. J Phys Chem A 2018; 122:7051-7061. [DOI: 10.1021/acs.jpca.8b05750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isaac J. S. De Vlugt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michael J. Lecours
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Patrick J. J. Carr
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ahdia Anwar
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rick A. Marta
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Fillion
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Vincent Steinmetz
- CLIO/LCP Bat. 201, Porte 2, Université Paris-Sud 11, Orsay 91405, Cedex, France
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Walker SWC, Mark A, Verbuyst B, Bogdanov B, Campbell JL, Hopkins WS. Characterizing the Tautomers of Protonated Aniline Using Differential Mobility Spectrometry and Mass Spectrometry. J Phys Chem A 2017; 122:3858-3865. [DOI: 10.1021/acs.jpca.7b10872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen W. C. Walker
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Alison Mark
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brent Verbuyst
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bogdan Bogdanov
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
- Shimadzu Scientific Instruments, Pleasanton, California 94566, United States
| | - J. Larry Campbell
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Microscale differential ion mobility spectrometry for field deployable chemical analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Lecours MJ, Marta RA, Steinmetz V, Keddie N, Fillion E, O'Hagan D, McMahon TB, Hopkins WS. Interaction of B 12F 122- with All-cis 1,2,3,4,5,6 Hexafluorocyclohexane in the Gas Phase. J Phys Chem Lett 2017; 8:109-113. [PMID: 27966976 DOI: 10.1021/acs.jpclett.6b02629] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clusters of all-cis 1,2,3,4,5,6-hexafluorocyclohexane and the dodecafluorododecaboron dianion, [C6F6H6]n[B12F12]2- (n = 0-4), are investigated in a combined experimental and computational study. DFT calculations and IRMPD spectra in the region of 800-2000 cm-1 indicate that C6H6F6 binds to open trigonal faces of B12F122- via a three-point interlocking binding motif. Calculated binding interactions reveal substantial contributions from C-H···F hydrogen bonding and binding energies that are among the strongest observed for a neutral-anion system.
Collapse
Affiliation(s)
- Michael J Lecours
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Rick A Marta
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Vincent Steinmetz
- Laboratoire Chimie Phyique, CLIO/LCP, Bâtiment 201, Campus Universitaire d'Orsay , 91405 Orsay, France
| | - Neil Keddie
- EastCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Eric Fillion
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - David O'Hagan
- EastCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Terrance B McMahon
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Liu C, Le Blanc JCY, Shields J, Janiszewski JS, Ieritano C, Ye GF, Hawes GF, Hopkins WS, Campbell JL. Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst 2015; 140:6897-903. [DOI: 10.1039/c5an00842e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanisms and energetics of ion solvation using differential mobility spectrometry.
Collapse
Affiliation(s)
| | | | - Jefry Shields
- Groton lab
- Pfizer Global Research and Development
- Groton
- USA
| | | | | | - Gene F. Ye
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| | | | | | | |
Collapse
|
21
|
Scott Hopkins W, Marta RA, Steinmetz V, McMahon TB. Mode-specific fragmentation of amino acid-containing clusters. Phys Chem Chem Phys 2015; 17:28548-55. [DOI: 10.1039/c5cp03517a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mode-specific IR-induced fragmentation is observed as a result of isomerization-induced transparency in an amino acid-containing cluster.
Collapse
Affiliation(s)
| | - Rick A. Marta
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| | - Vincent Steinmetz
- Laboratoire Chimie Physique – CLIO
- Bâtiment 201
- Porte 2
- Campus Universitaire d'Orsay
- Orsay
| | | |
Collapse
|