1
|
Zahariev F, Xu P, Westheimer BM, Webb S, Galvez Vallejo J, Tiwari A, Sundriyal V, Sosonkina M, Shen J, Schoendorff G, Schlinsog M, Sattasathuchana T, Ruedenberg K, Roskop LB, Rendell AP, Poole D, Piecuch P, Pham BQ, Mironov V, Mato J, Leonard S, Leang SS, Ivanic J, Hayes J, Harville T, Gururangan K, Guidez E, Gerasimov IS, Friedl C, Ferreras KN, Elliott G, Datta D, Cruz DDA, Carrington L, Bertoni C, Barca GMJ, Alkan M, Gordon MS. The General Atomic and Molecular Electronic Structure System (GAMESS): Novel Methods on Novel Architectures. J Chem Theory Comput 2023; 19:7031-7055. [PMID: 37793073 DOI: 10.1021/acs.jctc.3c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.
Collapse
Affiliation(s)
- Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Bryce M Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Simon Webb
- VeraChem LLC, 12850 Middlebrook Road, Suite 205, Germantown, Maryland 20874-5244, United States
| | - Jorge Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Ananta Tiwari
- EP Analytics, Inc., 9909 Mira Mesa Boulevard, Suite 230, San Diego, California 92131, United States
| | - Vaibhav Sundriyal
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Masha Sosonkina
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - George Schoendorff
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Megan Schlinsog
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Tosaporn Sattasathuchana
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Luke B Roskop
- Hewlett-Packard Enterprise, 2131 Lindau Lane #1000, Bloomington, Minnesota 55425, United States
| | | | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Athens, Georgia 30332, United States
| | - Piotr Piecuch
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Vladimir Mironov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Joani Mato
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Sam Leonard
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Sarom S Leang
- EP Analytics, Inc., 9909 Mira Mesa Boulevard, Suite 230, San Diego, California 92131, United States
| | - Joe Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Jackson Hayes
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Taylor Harville
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Karthik Gururangan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Emilie Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Igor S Gerasimov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Christian Friedl
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Katherine N Ferreras
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - George Elliott
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Daniel Del Angel Cruz
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Laura Carrington
- EP Analytics, Inc., 9909 Mira Mesa Boulevard, Suite 230, San Diego, California 92131, United States
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Giuseppe M J Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Melisa Alkan
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| |
Collapse
|
4
|
Park W, Shen J, Lee S, Piecuch P, Filatov M, Choi CH. Internal Conversion between Bright (1 1Bu+) and Dark (2 1Ag-) States in s- trans-Butadiene and s- trans-Hexatriene. J Phys Chem Lett 2021; 12:9720-9729. [PMID: 34590847 DOI: 10.1021/acs.jpclett.1c02707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Internal conversion (IC) between the two lowest singlet excited states, 11Bu+ and 21Ag-, of s-trans-butadiene and s-trans-hexatriene is investigated using a series of single- and multi- reference wave function and density functional theory (DFT) methodologies. Three independent types of the equation-of-motion coupled-cluster (EOMCC) theory capable of providing an accurate and balanced description of one- as well as two-electron transitions, abbreviated as δ-CR-EOMCC(2,3), DIP-EOMCC(4h2p){No}, and DEA-EOMCC(4p2h){Nu} or DEA-EOMCC(3p1h,4p2h){Nu}, consistently predict that the 11Bu+/21Ag- crossing in both molecules occurs along the bond length alternation coordinate. However, the analogous 11Bu+ and 21Ag- potentials obtained with some multireference approaches, such as CASSCF and MRCIS(D), as well as with the linear-response formulation of time-dependent DFT (TDDFT), do not cross. Hence, caution needs to be exercised when studying the low-lying singlet excited states of polyenes with conventional multiconfigurational methods and TDDFT. The multistate many-body perturbation theory methods, such as XMCQDPT2, do correctly reproduce the curve crossing. Among the simplest and least expensive computational methodologies, the DFT approaches that incorporate the contributions of doubly excited configurations, abbreviated as MRSF (mixed reference spin-flip) TDDFT and SSR(4,4), accurately reproduce our best EOMCC results. This is highly promising for nonadiabatic molecular dynamics simulations in larger systems.
Collapse
Affiliation(s)
- Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|