1
|
Attah V, Milner DS, Fang Y, Yan X, Leonard G, Heitman J, Talbot NJ, Richards TA. Duplication and neofunctionalization of a horizontally transferred xyloglucanase as a facet of the Red Queen coevolutionary dynamic. Proc Natl Acad Sci U S A 2024; 121:e2218927121. [PMID: 38830094 PMCID: PMC11181080 DOI: 10.1073/pnas.2218927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 xyloglucanase paralogs retained in P. sojae. Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in Nicotiana benthamiana triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.
Collapse
Affiliation(s)
- Victoria Attah
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - David S. Milner
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Yufeng Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNR4 7UH, United Kingdom
| | - Guy Leonard
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNR4 7UH, United Kingdom
| | - Thomas A. Richards
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| |
Collapse
|
2
|
Madina MH, Santhanam P, Asselin Y, Jaswal R, Bélanger RR. Progress and Challenges in Elucidating the Functional Role of Effectors in the Soybean- Phytophthora sojae Interaction. J Fungi (Basel) 2022; 9:12. [PMID: 36675833 PMCID: PMC9866111 DOI: 10.3390/jof9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phytophthora sojae, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, P. sojae secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of P. sojae effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with P. sojae effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean-P. sojae interaction.
Collapse
|
3
|
Shahnazari M, Zakipour Z, Razi H, Moghadam A, Alemzadeh A. Bioinformatics approaches for classification and investigation of the evolution of the Na/K-ATPase alpha-subunit. BMC Ecol Evol 2022; 22:122. [PMID: 36289471 PMCID: PMC9609216 DOI: 10.1186/s12862-022-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Na,K-ATPase is a key protein in maintaining membrane potential that has numerous additional cellular functions. Its catalytic subunit (α), found in a wide range of organisms from prokaryotes to complex eukaryote. Several studies have been done to identify the functions as well as determining the evolutionary relationships of the α-subunit. However, a survey of a larger collection of protein sequences according to sequences similarity and their attributes is very important in revealing deeper evolutionary relationships and identifying specific amino acid differences among evolutionary groups that may have a functional role. RESULTS In this study, 753 protein sequences using phylogenetic tree classification resulted in four groups: prokaryotes (I), fungi and various kinds of Protista and some invertebrates (II), the main group of invertebrates (III), and vertebrates (IV) that was consisted with species tree. The percent of sequences that acquired a specific motif for the α/β subunit assembly increased from group I to group IV. The vertebrate sequences were divided into four groups according to isoforms with each group conforming to the evolutionary path of vertebrates from fish to tetrapods. Data mining was used to identify the most effective attributes in classification of sequences. Using 1252 attributes extracted from the sequences, the decision tree classified them in five groups: Protista, prokaryotes, fungi, invertebrates and vertebrates. Also, vertebrates were divided into four subgroups (isoforms). Generally, the count of different dipeptides and amino acid ratios were the most significant attributes for grouping. Using alignment of sequences identified the effective position of the respective dipeptides in the separation of the groups. So that 208GC is apparently involved in the separation of vertebrates from the four other organism groups, and 41DH, 431FK, and 451KC were involved in separation vertebrate isoform types. CONCLUSION The application of phylogenetic and decision tree analysis for Na,K-ATPase, provides a better understanding of the evolutionary changes according to the amino acid sequence and its related properties that could lead to the identification of effective attributes in the separation of sequences in different groups of phylogenetic tree. In this study, key evolution-related dipeptides are identified which can guide future experimental studies.
Collapse
Affiliation(s)
- Marzieh Shahnazari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Zakipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
4
|
Frey K, Pucker B. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells 2020; 9:E458. [PMID: 32085510 PMCID: PMC7072748 DOI: 10.3390/cells9020458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Most protein-encoding genes in eukaryotes contain introns, which are interwoven with exons. Introns need to be removed from initial transcripts in order to generate the final messenger RNA (mRNA), which can be translated into an amino acid sequence. Precise excision of introns by the spliceosome requires conserved dinucleotides, which mark the splice sites. However, there are variations of the highly conserved combination of GT at the 5' end and AG at the 3' end of an intron in the genome. GC-AG and AT-AC are two major non-canonical splice site combinations, which have been known for years. Recently, various minor non-canonical splice site combinations were detected with numerous dinucleotide permutations. Here, we expand systematic investigations of non-canonical splice site combinations in plants across eukaryotes by analyzing fungal and animal genome sequences. Comparisons of splice site combinations between these three kingdoms revealed several differences, such as an apparently increased CT-AC frequency in fungal genome sequences. Canonical GT-AG splice site combinations in antisense transcripts are a likely explanation for this observation, thus indicating annotation errors. In addition, high numbers of GA-AG splice site combinations were observed in Eurytemoraaffinis and Oikopleuradioica. A variant in one U1 small nuclear RNA (snRNA) isoform might allow the recognition of GA as a 5' splice site. In depth investigation of splice site usage based on RNA-Seq read mappings indicates a generally higher flexibility of the 3' splice site compared to the 5' splice site across animals, fungi, and plants.
Collapse
Affiliation(s)
- Katharina Frey
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
5
|
Martin FN. Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Affiliation(s)
| | - Steven A. Nadler
- Department of Nematology, University of California, Davis, California 95616
| | | |
Collapse
|
7
|
Akamatsu H, Kato M, Ochi S, Mimuro G, Matsuoka JI, Takahashi M. Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment. THE PLANT PATHOLOGY JOURNAL 2019; 35:219-233. [PMID: 31244568 PMCID: PMC6586196 DOI: 10.5423/ppj.oa.11.2018.0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 06/01/2023]
Abstract
Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.
Collapse
Affiliation(s)
- Hajime Akamatsu
- Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-2-1 Inada, Joetsu, Niigata 943-0193, Japan
| | - Masayasu Kato
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Sunao Ochi
- Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-5-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Genki Mimuro
- Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
- Agricultural Research Institute, Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama, Toyama 939-8153, Japan
| | - Jun-Ichi Matsuoka
- Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-2-1 Inada, Joetsu, Niigata 943-0193, Japan
| | - Mami Takahashi
- Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-2-1 Inada, Joetsu, Niigata 943-0193, Japan
| |
Collapse
|
8
|
Affiliation(s)
- Donald J. S. Barr
- Biosystematics Research Centre, Research Branch, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
9
|
Harish A, Kurland CG. Empirical genome evolution models root the tree of life. Biochimie 2017; 138:137-155. [DOI: 10.1016/j.biochi.2017.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/25/2017] [Indexed: 01/05/2023]
|
10
|
Martin FN, Tooley PW. Phylogenetic relationships amongPhytophthoraspecies inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Paul W. Tooley
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, Maryland 21702
| |
Collapse
|
11
|
Dou D, Kale SD, Liu T, Tang Q, Wang X, Arredondo FD, Basnayake S, Whisson S, Drenth A, Maclean D, Tyler BM. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:425-35. [PMID: 20192830 DOI: 10.1094/mpmi-23-4-0425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
At least 12 avirulence genes have been genetically identified and mapped in Phytophthora sojae, an oomycete pathogen causing root and stem rot of soybean. Previously, the Avr4 and Avr6 genes of P. sojae were genetically mapped within a 24 kb interval of the genome. Here, we identify Avr4 and Avr6 and show that they are actually a single gene, Avr4/6, located near the 24-kb region. Avr4/6 encodes a secreted protein of 123 amino acids with an RXLR-dEER protein translocation motif. Transient expression of Avr4/6 in soybean leaves revealed that its gene product could trigger a hypersensitive response (HR) in the presence of either Rps4 or Rps6. Silencing Avr4/6 in P. sojae stable transformants abolished the avirulence phenotype exhibited on both Rps4 and Rps6 soybean cultivars. The N terminus of Avr4/6, including the dEER motif, is sufficient to trigger Rps4-dependent HR while its C terminus is sufficient to trigger Rps6-mediated HR. Compared with alleles from avirulent races, alleles of Avr4/6 from virulent races possess nucleotide substitutions in the 5' untranslated region of the gene but not in the protein-coding region.
Collapse
Affiliation(s)
- Daolong Dou
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg 24061, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Grünwald NJ, Goss EM, Press CM. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. MOLECULAR PLANT PATHOLOGY 2008; 9:729-40. [PMID: 19019002 PMCID: PMC6640315 DOI: 10.1111/j.1364-3703.2008.00500.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Phytophthora ramorum is an oomycete plant pathogen classified in the kingdom Stramenopila. P. ramorum is the causal agent of sudden oak death on coast live oak and tanoak as well as ramorum blight on woody ornamental and forest understorey plants. It causes stem cankers on trees, and leaf blight or stem dieback on ornamentals and understorey forest species. This pathogen is managed in the USA and Europe by eradication where feasible, by containment elsewhere and by quarantine in many parts of the world. Genomic resources provide information on genes of interest to disease management and have improved tremendously since sequencing the genome in 2004. This review provides a current overview of the pathogenicity, population genetics, evolution and genomics of P. ramorum. TAXONOMY Phytophthora ramorum (Werres, De Cock & Man in't Veld): kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. HOST RANGE The host range is very large and the list of known hosts continues to expand at the time of writing. Coast live oak and tanoak are ecologically, economically and culturally important forest hosts in the USA. Rhododendron, Viburnum, Pieris, Syringa and Camellia are key ornamental hosts on which P. ramorum has been found repeatedly, some of which have been involved in moving the pathogen via nursery shipments. Disease symptoms: P. ramorum causes two different diseases with differing symptoms: sudden oak death (bleeding lesions, stem cankers) on oaks and ramorum blight (twig dieback and/or foliar lesions) on tree and woody ornamental hosts. USEFUL WEBSITES http://nature.berkeley.edu/comtf/, http://rapra.csl.gov.uk/, http://www.aphis.usda.gov/plant_health/plant_pest_info/pram/index.shtml, http://genome.jgi-psf.org/Phyra1_1/Phyra1_1.home.html, http://pamgo.vbi.vt.edu/, http://pmgn.vbi.vt.edu/, http://vmd.vbi.vt.edu./, http://web.science.oregonstate.edu/bpp/labs/grunwald/resources.htm, http://www.defra.gov.uk/planth/pramorum.htm, http://www.invasive.org/browse/subject.cfm?sub=4603, http://www.forestry.gov.uk/forestry/WCAS-4Z5JLL.
Collapse
Affiliation(s)
- Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, OR 97330, USA
| | | | | |
Collapse
|
13
|
Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo FD, Zhang X, Tyler BM. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. THE PLANT CELL 2008; 20:1930-47. [PMID: 18621946 PMCID: PMC2518231 DOI: 10.1105/tpc.107.056093] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 06/06/2008] [Accepted: 06/27/2008] [Indexed: 05/18/2023]
Abstract
Effector proteins secreted by oomycete and fungal pathogens have been inferred to enter host cells, where they interact with host resistance gene products. Using the effector protein Avr1b of Phytophthora sojae, an oomycete pathogen of soybean (Glycine max), we show that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protein into plant cells. Particle bombardment experiments demonstrate that these motifs function in the absence of the pathogen, indicating that no additional pathogen-encoded machinery is required for effector protein entry into host cells. Furthermore, fusion of the Avr1b RXLR-dEER domain to green fluorescent protein (GFP) allows GFP to enter soybean root cells autonomously. The conclusion that RXLR and dEER serve to transduce oomycete effectors into host cells indicates that the >370 RXLR-dEER-containing proteins encoded in the genome sequence of P. sojae are candidate effectors. We further show that the RXLR and dEER motifs can be replaced by the closely related erythrocyte targeting signals found in effector proteins of Plasmodium, the protozoan that causes malaria in humans. Mutational analysis of the RXLR motif shows that the required residues are very similar in the motifs of Plasmodium and Phytophthora. Thus, the machinery of the hosts (soybean and human) targeted by the effectors may be very ancient.
Collapse
Affiliation(s)
- Daolong Dou
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. MOLECULAR PLANT PATHOLOGY 2007; 8:1-8. [PMID: 20507474 DOI: 10.1111/j.1364-3703.2006.00373.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED SUMMARY Phytophthora sojae is an oomycete pathogen of soybean, classified in the kingdom Stramenopiles. It causes 'damping off' of seedlings and root rot of older plants, with an annual cost worldwide of $1-2 billion. Owing to its economic importance, this species, along with P. infestans, has been developed as a model species for the study of oomycete plant pathogens. It is readily transformed with DNA enabling over-expression and silencing of selected genes, genetic maps have been constructed and large expressed sequence tag sequence libraries have been developed. A draft genome sequence has recently been completed. This review briefly summarizes current information about the pathogenicity, evolution, molecular biology and genomics of P. sojae. TAXONOMY Phytophthora sojae (Kaufman & Gerdman): superkingdom Eukaryota; kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. HOST RANGE Soybean is the only economically important host. Several species of lupins have also been reported as hosts. Disease symptoms and signs: All parts of the soybean plant are susceptible to infection by P. sojae, from germinating seedlings to mature plants. In the field, P. sojae causes damping off of soybean seedlings and a root and stem rot of established plants. Leaves can be infected in the field as a result of rain splash or by deliberate inoculation in the laboratory. Damping off can affect germinating seeds or emerged seedlings and is most severe when the spring is very wet and warm (25-30 degrees C). Established plants can become infected when the soil is wet for extended periods, especially if the soil is poorly drained. Both the cortex and the vascular tissue are colonized by P. sojae, and the infection can spread rapidly along the vascular tissues in susceptible cultivars. USEFUL WEBSITES http://pmgn.vbi.vt.edu, http://phytophthora.vbi.vt.edu, http://www.jgi.doe.gov/Psojae, http://www.jgi.doe.gov/Pramorum, http://www.pfgd.org, http://pamgo.vbi.vt.edu, http://soy.vbi.vt.edu, https://www.vbi.vt.edu/article/articleview/78, http://plantpath.osu.edu/faculty/dorrance.php.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| |
Collapse
|
15
|
Shan W, Liu J, Hardham AR. Phytophthora nicotianae PnPMA1 encodes an atypical plasma membrane H+ -ATPase that is functional in yeast and developmentally regulated. Fungal Genet Biol 2006; 43:583-92. [PMID: 16730200 DOI: 10.1016/j.fgb.2006.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/06/2006] [Accepted: 03/10/2006] [Indexed: 11/25/2022]
Abstract
PnPMA1, a gene encoding a putative P-type plasma membrane H(+)-ATPase, has been isolated by differential screening of a Phytophthora nicotianae germinated cyst cDNA library. PnPMA1 is differentially expressed during pathogen asexual development with a more than 10-fold increase in expression in germinated cysts, the stage at which plant infection is initiated, compared to vegetative or sporulating hyphae or motile zoospores. PnPMA1 proteins are encoded by two closely linked genes that have no introns and encode identical proteins having 1,068 amino acid residues and a molecular mass of 116.3kDa. PnPMA1 shows moderate identity (30-50%) to plant and fungal plasma membrane H(+)-ATPases and weak identity to other P-type cation-transporting ATPases. PnPMA1 contains all the catalytic domains characteristic of H(+)-ATPases but also has a distinct domain of approximately 155 amino acids that forms a putative cytoplasmic loop between transmembrane domains 8 and 9, a feature that is not present in PMA1 proteins from other organisms. Polyclonal antibodies raised against the 155 residue domain were shown by immunogold labelling to react with a protein in the plasma membrane of P. nicotianae germinated cysts but not with the plasma membrane of motile zoospores. Genetic complementation experiments demonstrated that the P. nicotianae PnPMA1 is functional in yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Weixing Shan
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
16
|
Avila-Adame C, Gómez-Alpizar L, Zismann V, Jones KM, Buell CR, Ristaino JB. Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Curr Genet 2005; 49:39-46. [PMID: 16328503 DOI: 10.1007/s00294-005-0016-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 11/24/2022]
Abstract
The mitochondrial genomes of haplotypes of the Irish potato famine pathogen, Phytophthora infestans, were sequenced. The genome sizes were 37,922, 39,870 and 39,840 bp for the type Ia, IIa and IIb mitochondrial DNA (mtDNA) haplotypes, respectively. The mitochondrial genome size for the type Ib haplotype, previously sequenced by others, was 37,957 bp. More than 90% of the genome contained coding regions. The GC content was 22.3%. A total of 18 genes involved in electron transport, 2 RNA-encoding genes, 16 ribosomal protein genes and 25 transfer RNA genes were coded on both strands with a conserved arrangement among the haplotypes. The type I haplotypes contained six unique open reading frames (ORFs) of unknown function while the type II haplotypes contained 13 ORFs of unknown function. Polymorphisms were observed in both coding and non-coding regions although the highest variation was in non-coding regions. The type I haplotypes (Ia and Ib) differed by only 14 polymorphic sites, whereas the type II haplotypes (IIa and IIb) differed by 50 polymorphic sites. The largest number (152) of polymorphic sites was found between the type IIb and Ia haplotypes. A large spacer flanked by the genes coding for tRNA-Tyr (trnY) and the small subunit RNA (rns) contained the largest number of polymorphic sites and corresponds to the region where a large indel that differentiates type II from type I haplotypes is located. The size of this region was 785, 2,666 and 2,670 bp in type Ia, IIa and IIb haplotypes, respectively. Among the four haplotypes, 81 mutations were identified. Phylogenetic and coalescent analysis revealed that although the type I and II haplotypes shared a common ancestor, they clearly formed two independent lineages that evolved independently. The type II haplotypes diverged earlier than the type I haplotypes. Thus our data do not support the previous hypothesis that the type II lineages evolved from the type I lineages. The type I haplotypes diverged more recently and the mutations associated with the evolution of the Ia and Ib types were identified.
Collapse
Affiliation(s)
- Cruz Avila-Adame
- Department of Plant Pathology, North Carolina State University, Box 7616, Raleigh, 27695, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ribichich KF, Salem-Izacc SM, Georg RC, Vêncio RZN, Navarro LD, Gomes SL. Gene discovery and expression profile analysis through sequencing of expressed sequence tags from different developmental stages of the chytridiomycete Blastocladiella emersonii. EUKARYOTIC CELL 2005; 4:455-64. [PMID: 15701807 PMCID: PMC549328 DOI: 10.1128/ec.4.2.455-464.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastocladiella emersonii is an aquatic fungus of the chytridiomycete class which diverged early from the fungal lineage and is notable for the morphogenetic processes which occur during its life cycle. Its particular taxonomic position makes this fungus an interesting system to be considered when investigating phylogenetic relationships and studying the biology of lower fungi. To contribute to the understanding of the complexity of the B. emersonii genome, we present here a survey of expressed sequence tags (ESTs) from various stages of the fungal development. Nearly 20,000 cDNA clones from 10 different libraries were partially sequenced from their 5' end, yielding 16,984 high-quality ESTs. These ESTs were assembled into 4,873 putative transcripts, of which 48% presented no matches with existing sequences in public databases. As a result of Gene Ontology (GO) project annotation, 1,680 ESTs (35%) were classified into biological processes of the GO structure, with transcription and RNA processing, protein biosynthesis, and transport as prevalent processes. We also report full-length sequences, useful for construction of molecular phylogenies, and several ESTs that showed high similarity with known proteins, some of which were not previously described in fungi. Furthermore, we analyzed the expression profile (digital Northern analysis) of each transcript throughout the life cycle of the fungus using Bayesian statistics. The in silico approach was validated by Northern blot analysis with good agreement between the two methodologies.
Collapse
Affiliation(s)
- Karina F Ribichich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Peters RD, Clark RJ, Coffin AD, Sturz AV, Lambert DH, Miller JS. Limited Genetic Diversity in North American Isolates of Phytophthora erythroseptica Pathogenic to Potato Based on RAPD Analysis. PLANT DISEASE 2005; 89:380-384. [PMID: 30795453 DOI: 10.1094/pd-89-0380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pink rot of potato (Solanum tuberosum), caused by Phytophthora erythroseptica, is found wherever potatoes are grown, and in the last decade, it has reemerged as an economically important disease in Canada and the United States. A selection of isolates of P. erythroseptica from major potato-growing regions in North America, namely Prince Edward Island and New Brunswick, Canada, and Maine and Idaho, U.S.A., was assessed for genetic diversity with randomly chosen decanucleotide primers which were used to amplify regions of DNA to reveal polymorphisms among templates (random amplified polymorphic DNA [RAPD]). The isolates varied in their geographic origin as well as in their sensitivity to mefenoxam, as determined by an in vitro assay. In three separate RAPD screens (I, II, and III) with 23 isolates of P. erythroseptica chosen from a larger collection, 1,410, 369, and 316 robust, scorable bands were amplified, respectively. However, among the bands amplified in screens I, II, and III, only 3, 1, and 3 bands, respectively, were polymorphic. When three primers yielding polymorphisms were used to screen 106 isolates from Prince Edward Island and New Brunswick, or a representative collection of 32 isolates from Prince Edward Island, New Brunswick, Maine, and Idaho, no major variation was discovered. RAPD markers were not correlated with geographic origin or mefenoxam sensitivity of the isolates. From an evolutionary standpoint, the absence of genetic diversity among the isolates of P. erythroseptica we examined may be attributable to the relatively recent introduction of a small founding population of the pathogen in North America.
Collapse
Affiliation(s)
- Rick D Peters
- Agriculture and Agri-Food Canada, Crops and Livestock Research Centre, 440 University Ave., Charlottetown, PEI C1A 4N6 Canada
| | - Rod J Clark
- PEI Dept. of Agriculture and Forestry, Plant Health Research & Diagnostics, P.O. Box 1600, Charlottetown, PEI C1A 7N3 Canada
| | - Albert D Coffin
- PEI Dept. of Agriculture and Forestry, Plant Health Research & Diagnostics, P.O. Box 1600, Charlottetown, PEI C1A 7N3 Canada
| | - Antony V Sturz
- PEI Dept. of Agriculture and Forestry, Plant Health Research & Diagnostics, P.O. Box 1600, Charlottetown, PEI C1A 7N3 Canada
| | - David H Lambert
- Dept. of Applied Ecology and Environmental Science, University of Maine, 5722 Deering Hall, Room 9, Orono, ME 04469-5722 U.S.A
| | - Jeff S Miller
- University of Idaho, Dept. of Plant, Soil and Entomological Sciences, P.O. Box 870, Aberdeen, ID 83210-0870 U.S.A
| |
Collapse
|
19
|
Hausbeck MK, Lamour KH. Phytophthora capsici on Vegetable Crops: Research Progress and Management Challenges. PLANT DISEASE 2004; 88:1292-1303. [PMID: 30795189 DOI: 10.1094/pdis.2004.88.12.1292] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
20
|
Shan W, Cao M, Leung D, Tyler BM. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:394-403. [PMID: 15077672 DOI: 10.1094/mpmi.2004.17.4.394] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.
Collapse
Affiliation(s)
- Weixing Shan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
21
|
Skalamera D, Wasson AP, Hardham AR. Genes expressed in zoospores of Phytophthora nicotianae. Mol Genet Genomics 2003; 270:549-57. [PMID: 14652735 DOI: 10.1007/s00438-003-0946-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 10/17/2003] [Indexed: 11/27/2022]
Abstract
The genus Phytophthora includes many highly destructive plant pathogens. In many Phytophthora species, pathogen dispersal and initiation of plant infection are achieved by motile, biflagellate zoospores that are chemotactically attracted to suitable infection sites. In order to study gene expression in zoospores, we have constructed a cDNA library using mRNA from zoospores of Phytophthora nicotianae. The library was arrayed and screened using probes derived from mycelium or zoospore mRNA. More than 400 clones representing genes preferentially expressed in zoospores were identified and sequenced from the 5' end of the insert. The expressed sequence tags (ESTs) generated were found to represent 240 genes. The ESTs were compared to sequences in GenBank and in the Phytophthora Genome Consortium database, and classified according to putative function based on homology to known proteins. To further characterize the identified genes, a colony array was created on replicate nylon filters and screened with probes derived from four Phytophthora developmental stages including zoospores, germinating cysts, vegetative mycelium and sporulating hyphae, and from inoculated and uninoculated tobacco seedlings. Data from sequence analysis and colony array screening were compiled into a local database, and searched to identify genes that are preferentially expressed in zoospores for future functional analysis.
Collapse
Affiliation(s)
- D Skalamera
- Cooperative Research Centre for Tropical Plant Protection and Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, ACT 2601, Canberra, Australia.
| | | | | |
Collapse
|
22
|
Andersson MG, Cerenius L. Pumilio homologue from saprolegnia parasitica specifically expressed in undifferentiated spore cysts. EUKARYOTIC CELL 2002; 1:105-11. [PMID: 12455976 PMCID: PMC118044 DOI: 10.1128/ec.1.1.105-111.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of spore-specific marker transcripts at different stages of the asexual life cycle of Saprolegnia parasitica was analyzed. One of the markers, designated puf1, was found to be expressed transiently upon each of several cycles of zoospore encystment and reemergence. The transcript is induced immediately upon zoospore encystment and is rapidly lost when a cyst is triggered to germinate. In nongerminating cysts, puf1 is maintained until a time point when the cysts can no longer be triggered to germinate and thus have become determined for zoospore reemergence. The results show that the cyst stage has two phases, of about equal duration, which are physiologically and transcriptionally distinct and that the transcriptional machinery of oomycetes is also active in nongerminating spores. puf1 encodes a putative mRNA binding protein belonging to a conserved class of proteins including the Drosophila melanogaster Pumilio protein, Caenorhabditis elegans FBF, and Saccharomyces cerevisiae Puf5, all of which are involved in regulation of gene expression by post-transcriptional mechanisms.
Collapse
Affiliation(s)
- M Gunnar Andersson
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
23
|
Birch PR, Whisson SC. Phytophthora infestans enters the genomics era. MOLECULAR PLANT PATHOLOGY 2001; 2:257-263. [PMID: 20573013 DOI: 10.1046/j.1464-6722.2001.00073.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED summary Phytophthora infestans, cause of late-blight, is the most devastating disease of potato world-wide. Recent years have seen a dramatic intensification in molecular biological studies of P. infestans, including the development of novel tools for transformation and gene silencing and the resources for genetical, transcriptional and physical mapping of the genome. This review will focus on the increasing efforts to use these resources to discover the genetic bases of pathogenicity, avirulence and host-specificity. TAXONOMY Phytophthora infestans (Mont.) de Bary-Kingdom Chromista, Phylum Oomycota, Order Peronosporales, Family Peronosporaceae, Genus Phytophthora, of which it is the type species. HOST RANGE Infects a wide range of solanaceous species. Economically important hosts are potato, tomato, eggplant and some other South American hosts (tree tomato and pear melon) on which it causes late blight. Disease symptoms: Infected foliage is initially yellow, becomes water soaked and eventually blackens. Leaf symptoms comprise purple-black or brown-black lesions at the leaf tip, later spreading across the leaf to the stem. Whitish masses of sporangia develop on the underside of the leaf. Tubers become infected later in the season and, in the early stages, consist of slightly brown or purple blotches on the skin. In damp soils the tuber decays rapidly before harvest. Tuber infection is quickly followed by secondary fungal or bacterial infection known as 'wet rot'. Useful web sites:http://www.ncgr.org/pgc/; http://www.oardc.ohio-state.edu/phytophthora/.
Collapse
Affiliation(s)
- P R Birch
- Unit of Mycology, Bacteriology and Nematology, Division of Pathology, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
24
|
Qutob D, Hraber PT, Sobral BW, Gijzen M. Comparative analysis of expressed sequences in Phytophthora sojae. PLANT PHYSIOLOGY 2000; 123:243-54. [PMID: 10806241 PMCID: PMC58998 DOI: 10.1104/pp.123.1.243] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/1999] [Accepted: 01/13/2000] [Indexed: 05/18/2023]
Abstract
Phytophthora sojae (Kaufmann and Gerdemann) is an oomycete that causes stem and root rot on soybean (Glycine max L. Merr) plants. We have constructed three cDNA libraries using mRNA isolated from axenically grown mycelium and zoospores and from tissue isolated from plant hypocotyls 48 h after inoculation with zoospores. A total of 3,035 expressed sequence tags (ESTs) were generated from the three cDNA libraries, representing an estimated 2,189 cDNA transcripts. The ESTs were classified according to putative function based on similarity to known proteins, and were analyzed for redundancy within and among the three source libraries. Distinct expression patterns were observed for each library. By analysis of the percentage G+C content of the ESTs, we estimate that two-thirds of the ESTs from the infected plant library are derived from P. sojae cDNA transcripts. The ESTs originating from this study were also compared with a collection of Phytophthora infestans ESTs and with all other non-human ESTs to assess the similarity of the P. sojae sequences to existing EST data. This collection of cDNA libraries, ESTs, and accompanying annotation will provide a new resource for studies on oomycetes and on soybean responses to pathogen challenge.
Collapse
Affiliation(s)
- D Qutob
- Agriculture and Agri-Food Canada, London, Ontario
| | | | | | | |
Collapse
|
25
|
James TY, Porter D, Leander CA, Vilgalys R, Longcore JE. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. ACTA ACUST UNITED AC 2000. [DOI: 10.1139/b00-009] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chytrids (Chytridiomycota) are morphologically simple aquatic fungi that are unified by their possession of zoospores that typically have a single, posteriorly directed flagellum. This study addresses the systematics of the chytrids by generating a phylogeny of ribosomal DNA sequences coding for the small subunit gene of 54 chytrids, with emphasis on sampling the largest order, the Chytridiales. Selected chytrid sequences were also compared with sequences from Zygomycota, Ascomycota, and Basidiomycota to derive an overall fungal phylogeny. These analyses show that the Chytridiomycota is probably not a monophyletic group; the Blastocladiales cluster with the Zygomycota. Analyses did not resolve relationships among chytrid orders, or among clades within the Chytridiales, which suggests that the divergence times of these groups may be ancient. Four clades were well supported within the Chytridiales, and each of these clades was coincident with a group previously identified by possession of a common subtype of zoospore ultrastructure. In contrast, the analyses revealed homoplasy in several developmental and zoosporangial characters.Key words: zoospore ultrastructure, Chytridiales, molecular phylogeny, Chytridiomycota, operculum.
Collapse
|
26
|
Ristaino JB, Johnston SA. Ecologically Based Approaches to Management of Phytophthora Blight on Bell Pepper. PLANT DISEASE 1999; 83:1080-1089. [PMID: 30841127 DOI: 10.1094/pdis.1999.83.12.1080] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
27
|
Matsumoto C, Kageyama K, Suga H, Hyakumachi M. Phylogenetic relationships of Pythium species based on ITS and 5.8S sequences of the ribosomal DNA. MYCOSCIENCE 1999. [DOI: 10.1007/bf02463876] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Abstract
Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales).
Collapse
Affiliation(s)
- J Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | | | | |
Collapse
|
29
|
Szécsi A. Origins, phylogenies and relationships in the fungal Kingdom. Acta Microbiol Immunol Hung 1999; 46:175-9. [PMID: 10379384 DOI: 10.1556/amicr.46.1999.2-3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The „true” fungi have been referred to as the KingdomFungi,the KingdomEumyceteae,or theEumycota[1].The fungi are eukaryotic organisms, characterized by: (i) a diversity of microbodies; (ii) cell walls that have a great similarity of architecture; (iii) hyphae that have a major chitin component, extended apically, and divide by centripetal invagination of the plasma membrane; (iv) lomasomes: sponge-like intumescences seen on the inside of the cell wall; (v) complete absence of the Golgi organelle in the terrestrial assemblages (zygomycetes, ascomycetes, and basidiomycetes) and some of the aquatic taxa; and (vi) nuclei in which most, if not all, gene products involved in mitosis probably have higher eukaryotic paramologues but which, in other ways, are exceptional [2]. Fungi are reproducing sexually or asexually, the diploid phase generally short-lived. Fungi parasitize a wide range of plants, animals, and other fungi [3].
Collapse
Affiliation(s)
- A Szécsi
- Department of Plant Pathology, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
30
|
|
31
|
Ristaino JB, Madritch M, Trout CL, Parra G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl Environ Microbiol 1998; 64:948-54. [PMID: 9501434 PMCID: PMC106350 DOI: 10.1128/aem.64.3.948-954.1998] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023] Open
Abstract
We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora.
Collapse
Affiliation(s)
- J B Ristaino
- Department of Plant Pathology, North Carolina State University, Raleigh 27695, USA.
| | | | | | | |
Collapse
|
32
|
Van der Auwera G, De Wachter R. Complete large subunit ribosomal RNA sequences from the heterokont algae Ochromonas danica, Nannochloropsis salina, and Tribonema aequale, and phylogenetic analysis. J Mol Evol 1997; 45:84-90. [PMID: 9211738 DOI: 10.1007/pl00006205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The large subunit ribosomal RNA sequences from the heterokont algae Ochromonas danica, Nannochloropsis salina, and Tribonema aequale were determined. These sequences were combined with small subunit ribosomal RNA sequences in order to carry out a phylogenetic analysis based on neighbor-joining, maximum parsimony, and maximum likelihood methods. Our results indicate that heterokont fungi and heterokont algae each are monophyletic, and confirm that they together form a monophyletic group called "stramenopiles." Within the heterokont algae, the eustigmatophyte Nannochloropsis salina either clusters with the chrysophyte Ochromonas danica or forms a sister group to a cluster comprising the phaeophyte Scytosiphon lomentaria and the xanthophyte Tribonema aequale. The alveolates were identified as the closest relatives of the stramenopiles, but the exact order of divergence between the eukaryotic crown taxa could not be established with confidence.
Collapse
Affiliation(s)
- G Van der Auwera
- Department of Biochemistry, University of Antwerp (UIA), Universiteitsplein 1, B 2610 Antwerpen, Belgium
| | | |
Collapse
|
33
|
Drenth A, Alfonso C, Govers F. AFLP Linkage Map of the Oomycete Phytophthora infestans. Fungal Genet Biol 1997; 21:278-91. [PMID: 9299198 DOI: 10.1006/fgbi.1997.0981] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogen Phytophthora infestans. The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Vos et al., 1995, Nucleic Acids Res. 23: 4407-4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates of P. infestans. The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus. Copyright 1997 Academic Press
Collapse
|
34
|
Van der Auwera G, De Wachter R. Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii, and implications for the evolution of zoosporic fungi. J Mol Evol 1996; 43:476-83. [PMID: 8875862 DOI: 10.1007/bf02337520] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 5.8S and 28S ribosomal RNA sequences of the chytridiomycete Blastocladiella emersonii were determined. These data were combined with 18S rRNA sequences in order to carry out a phylogenetic analysis based on distance matrix, parsimony, and maximum likelihood methods. The new data confirmed that chytridiomycetes are true fungi and not protists, as was already suggested on the basis of biochemical, ultrastructural, and 18S rRNA data. Within the fungal clade, B. emersonii formed the first line of divergence. The position of the fungi within the eukaryotic "crown" taxa was also reassessed, and the alveolate-stramenopile cluster appeared as their sister group. The stramenopiles also comprise a number of zoosporic fungi, which resemble chytridiomycetes in so many respects, e.g., production of motile spores, thallus morphology, and absorptive nutrition, that they have been classified together with them in the past. This suggests that the possible common ancestor of the fungi, stramenopiles, and alveolates may have been a zoosporic fungus, which would mean that zoosporic fungi are paraphyletic instead of polyphyletic as previously suggested.
Collapse
Affiliation(s)
- G Van der Auwera
- Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B 2610 Antwerpen, Belgium
| | | |
Collapse
|
35
|
Paquin B, Roewer I, Wang Z, Lang BF. A robust fungal phytogeny using the mitochondrially encoded NAD5 protein sequence. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present a fungal phylogeny based on mitochondrial NAD5 (subunit of the NADH dehydrogenase) protein sequences. The tree topology is well supported by bootstrap analysis and mostly congruent with trees inferred from nuclear sequences, ultrastructural data, or mitochondrial COX1 and COX3 (subunits of the cytochrome oxidase) protein sequences. The NAD5 tree points to (i) an early divergence of the Chytridiomycetes, (ii) an appearance of Zygomycetes prior to the divergence of Ascomycetes and Basidiomycetes, and (iii) Oomycetes as clearly unrelated to fungi. In addition, this analysis predicts a common ancestor of fungi and animals, to the exclusion of green algae and plants. Our results reinforce the view that protein sequences are of high value in the reconstruction of the phylogenetic history of mitochondria. Key words: protein sequences, mitochondria, phylogeny, fungi, Oomycetes.
Collapse
|
36
|
Abstract
Eumycetozoans, the myxomycetes, protostelids, and dictyostelids, were first hypothesized to be a monophyletic group by L.S. Olive, who suggested that the primitive members of the group were similar to some of the extant protostelids. A review of morphological evidence supporting some aspects of this hypothesis is presented along with explicit explanations of the shortcomings of morphological data as tests of other aspects. For the hypothesis to be supported, modified, or rejected, data from other areas such as the sequences of the nuclear ribosomal small subunit genes (SSrDNA) will have to be used. Presently, sequences for this gene are known only from Physarum polycephalum and Dictyostelium discoideum. These two slime molds are treated as separate, deep clades in the grand eukaryote phylogenies derived from the sequences of SSrDNA. That is, each species represents an independent lineage that diverged early in the history of the eukaryotes. Insufficient taxon sampling may account for the molecular trees which suggest that the dictyostelids and myxomycetes are not members of a monophyletic group. We have begun to examine the SSrDNA sequence in the protostelid Protostelium mycophaga. Preliminary phylogenetic reconstructions using 11 eukaryotic outgroups suggest that the protostelids, myxomycetes, and dictyostelids are members of a single monophyletic group which may be most closely related to the Chromista. It is interesting that these results coincide with earlier phylogenetic hypotheses based on the morphological characters of these slime molds. Key words: dictyostelids, myxomycetes, protostelids, ribosomal DNA, slime molds.
Collapse
|
37
|
Judelson HS, Whittaker SL. Inactivation of transgenes in Phytophthora infestans is not associated with their deletion, methylation, or mutation. Curr Genet 1995; 28:571-9. [PMID: 8593689 DOI: 10.1007/bf00518171] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mitotic and meiotic stabilities of transgenes were evaluated in the oomycete, Phytophthora infestans. Genes encoding beta-glucuronidase (GUS), neomycin phosphotransferase (NPT) and hygromycin phosphotransferase (HPT), fused to one of six promoters from P. infestans or other oomycetes, were usually stably expressed during continued asexual culture and transmitted to progeny. However, the activity of these genes became undetectable in many strains during asexual or sexual propagation. Over 33 months of growth, transgene expression stopped each month in 1-3% of the transformants. Silencing of the genes was not associated with their deletion, mutation, or hypermethylation. The conformation of the integrated sequences was similar in strains destined to continue or terminate expression of the transgenes. Expression of the genes was not associated with a loss of fitness during growth in vitro and in planta, which might otherwise have selected for silencing events.
Collapse
Affiliation(s)
- H S Judelson
- Department of Plant Pathology, University of California, Riverside 92521, USA
| | | |
Collapse
|
38
|
Kamoun S, Young M, Förster H, Coffey MD, Tyler BM. Potential Role of Elicitins in the Interaction between
Phytophthora
Species and Tobacco. Appl Environ Microbiol 1994; 60:1593-8. [PMID: 16349258 PMCID: PMC201522 DOI: 10.1128/aem.60.5.1593-1598.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential role of extracellular elicitor proteins (elicitins) from
Phytophthora
species as avirulence factors in the interaction between
Phytophthora
and tobacco was examined. A survey of 85
Phytophthora
isolates representing 14 species indicated that production of elicitin is almost ubiquitous except for isolates of
Phytophthora parasitica
from tobacco. The production of elicitins by isolates of
P. parasitica
correlated without exception with low or no virulence on tobacco. Genetic analysis was conducted by using a cross between two isolates of
P. parasitica
, segregating for production of elicitin and virulence on tobacco. Virulence assays of the progeny on tobacco confirmed the correlation between production of elicitin and low virulence.
Collapse
Affiliation(s)
- S Kamoun
- Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis, Davis, California 95616
| | | | | | | | | |
Collapse
|
39
|
Judelson HS. Intermolecular ligation mediates efficient cotransformation in Phytophthora infestans. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:241-50. [PMID: 8510651 DOI: 10.1007/bf00281624] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of non-replicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of beta-glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, beta-galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.
Collapse
Affiliation(s)
- H S Judelson
- Center for Engineering Plants for Resistance Against Pathogens (CEPRAP), University of California, Davis 95616
| |
Collapse
|
40
|
Judelson HS, Coffey MD, Arredondo FR, Tyler BM. Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 1993; 23:211-8. [PMID: 8382110 DOI: 10.1007/bf00351498] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A procedure for stable transformation was developed for Phytophthora megasperma f. sp. glycinea, an oomycete pathogen of soybean. Transformants were obtained using a bacterial hygromycin resistance gene fused to a promoter and terminator from the ham34 gene of another oomycete, Bremia lactucae. Vector DNA, alone or complexed to cationic liposomes, was introduced into protoplasts using polyethylene glycol and CaCl2. DNA and RNA hybridization, and phosphotransferase assays, confirmed the presence and expression of vector DNA in the transformants. Hybridization to electrophoretically separated chromosomes of P. m. glycinea showed that vector DNA had integrated into only one chromosome in four transformants, and into multiple chromosomes in one transformant.
Collapse
Affiliation(s)
- H S Judelson
- Department of Vegetable Crops, University of California, Davis 95616
| | | | | | | |
Collapse
|
41
|
Sugiyama J, Suh SO. Phylogenetic analysis of basidiomycetous yeasts by means of 18S ribosomal RNA sequences: relationship of Erythrobasidium hasegawianum and other basidiomycetous yeast taxa. Antonie Van Leeuwenhoek 1993; 63:201-9. [PMID: 8259836 DOI: 10.1007/bf00872394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The basidiomycetous yeast genus Erythrobasidium Hamamoto, Sugiyama & Komagata, based on the type species E. hasegawianum Hamamoto et al., is characterized by filobasidiaceous basidia and the Q-10 (H2) system as its major ubiquinone. It is tentatively placed in the Filobasidiaceae. The molecular characterization is based on 18S ribosomal RNA sequence comparisons among the basidiomycetous yeasts, and the ultrastructural characterization on the cell wall and hyphal septal pores in E. hasegawianum clearly indicate a close relationship with the teliospore-forming yeasts Rhodosporidium toruloides and Leucosporidium scottii. Our molecular phylogeny with statistical analysis suggests that the existing taxonomic system of basidiomycetous yeasts, based primarily on the morphology of basidia including the teliospores (probasidia), should be revised.
Collapse
Affiliation(s)
- J Sugiyama
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
42
|
Govind NS, McNally KL, Trench RK. Isolation and sequence analysis of the small subunit ribosomal RNA gene from the euryhaline yeast Debaryomyces hansenii. Curr Genet 1992; 22:191-5. [PMID: 1525872 DOI: 10.1007/bf00351725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The small subunit ribosomal RNA gene (SSU rDNA) from the euryhaline yeast Debaryomyces hansenii has been isolated and sequenced. After appropriate alignment of this sequence with SSU rDNA sequences from 30 other taxa, phylogenetic reconstruction using distance matrix and maximum parsimony methods indicates that D. hansenii is most closely affiliated with Candida albicans, and occurs in the cluster of the yeasts Saccharomyces cerevisiae, Torulaspora delbruekii, Candida glabrata, and Kluyveromyces lactis. It appears that the capacity to tolerate high salt is independent of phylogenetic affiliations based on SSU rDNA analyses.
Collapse
Affiliation(s)
- N S Govind
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
43
|
Judelson HS, Tyler BM, Michelmore RW. Regulatory sequences for expressing genes in oomycete fungi. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:138-46. [PMID: 1495476 DOI: 10.1007/bf00272355] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Promoter and terminator sequences from a range of species were tested for activity in the oomycetes, a group of lower fungi that bear an uncertain taxonomic affinity to other organisms and in which little is known of the sequences required for transcription. Transient assays, using the reporter gene beta-glucuronidase (GUS), were used to examine the function of these promoters and terminators in the plant pathogens Phytophthora infestans and P. megasperma f. sp. glycinea, and in the saprophytic water mold, Achlya ambisexualis. Oomycete promoters, isolated from the ham34 and hsp70 genes of Bremia lactucae and the actin gene of P. megasperma f. sp. glycinea, resulted in high levels of GUS accumulation in each of the three oomycetes. In contrast, little or no activity was detected when promoters from higher fungi (four ascomycetes and one basidiomycete), plants, and animals were tested. The terminator from the ham34 gene resulted in much higher levels of GUS accumulation than did others, although an oomycete terminator was not absolutely required for expression. Transcript mapping of RNA from stable transformants confirmed accurate initiation from the B. lactucae hsp70 promoter and termination within 3' ham34 sequences in P. infestans. Our results indicate that the transcriptional machinery of the oomycetes differs significantly from that of the higher fungi, but that enough conservation exists within the class to allow vectors developed from one oomycete species to be used for others.
Collapse
Affiliation(s)
- H S Judelson
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis 95616
| | | | | |
Collapse
|