1
|
Eggertson QA, Rintoul TL, Lévesque CA. Resolving the Globisporangium ultimum ( Pythium ultimum) species complex. Mycologia 2023; 115:768-786. [PMID: 37796448 DOI: 10.1080/00275514.2023.2241980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/25/2023] [Indexed: 10/06/2023]
Abstract
The Globisporangium ultimum (formerly Pythium ultimum) species complex was previously composed of two morphological varieties: var. ultimum and var. sporangiiferum. Prior attempts to resolve this morphology-based species complex using molecular techniques have been inconclusive or conflicting. The increased availability of sequenced genomes and isolates identified as G. ultimum var. ultimum and var. sporangiiferum has allowed us to examine these relationships at a higher resolution and with a broader scope than previously possible. Using comparative genomics, we identified highly variable gene regions and designed primers for four new protein-coding genes for phylogenetics. These were then used alongside three known markers to generate a nuclear multigene genealogy of the species complex. From a collection of 163 isolates belonging to the target taxa, a subset of 29 was chosen to be included in this study (verified with nuclear rDNA internal transcribed spacer 1 [ITS1] and mitochondrial cytochrome c oxidase subunit 1 [cox1] sequences). Seventeen isolates of var. ultimum were selected to be representative of variations in genotype, morphology, and geographic collection location. The 12 isolates of var. sporangiiferum included all available specimens identified either morphologically (in previous studies) or through sequence similarity with ITS1 and cox1. Based on the fulfillment of reciprocal monophyly and observed genealogical concordance under the genealogical concordance phylogenetic species recognition, we determined that the Globisporangium ultimum species complex is composed of four genetically distinct species: Globisporangium ultimum, Globisporangium sporangiiferum, Globisporangium solveigiae, and Globisporangium bothae.
Collapse
Affiliation(s)
- Quinn A Eggertson
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Central Experimental Farm, 960 Carling Ave. Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Tara L Rintoul
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Central Experimental Farm, 960 Carling Ave. Ottawa, Ontario, K1A 0C6, Canada
| | - C André Lévesque
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Central Experimental Farm, 960 Carling Ave. Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
2
|
Batson AM, Woodhall JW, du Toit LJ. Real-Time PCR Assays for Races of the Spinach Fusarium Wilt Pathogen, Fusarium oxysporum f. sp. spinaciae. PLANT DISEASE 2023; 107:2633-2642. [PMID: 36734942 DOI: 10.1094/pdis-11-22-2658-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is a significant limitation for producers of vegetative spinach and spinach seed crops during warm temperatures and/or on acid soils. Identification of isolates of F. oxysporum f. sp. spinaciae, and distinction of isolates of the two known races, entails time-intensive pathogenicity tests. In this study, two real-time PCR assays were developed: one for a candidate effector gene common to both races of F. oxysporum f. sp. spinaciae, and another for a candidate effector gene unique to isolates of race 2. The assays were specific to isolates of F. oxysporum f. sp. spinaciae (n = 44) and isolates of race 2 (n = 23), respectively. Neither assay amplified DNA from 10 avirulent isolates of F. oxysporum associated with spinach, 57 isolates of other formae speciales and Fusarium spp., or 7 isolates of other spinach pathogens. When the assays were used to detect DNA extracted from spinach plants infected with an isolate of race 1, race 2, or a 1:1 mixture of both races, the amount of target DNA detected increased with increasing severity of wilt. Plants infected with one or both isolates could be distinguished based on the ratio in copy number for each target locus. The real-time PCR assays enable rapid diagnosis of Fusarium wilt of spinach and will facilitate research on the epidemiology and management of this disease, as well as surveys on the prevalence of this understudied pathogen in regions of spinach and/or spinach seed production.
Collapse
Affiliation(s)
- Alex M Batson
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| | - James W Woodhall
- University of Idaho Parma Research and Extension Center, Parma, ID 83360
| | - Lindsey J du Toit
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| |
Collapse
|
3
|
Batson AM, Spawton KA, Katz R, du Toit LJ. Cladosporium Leaf Spot Caused by Cladosporium variabile in Winter High Tunnel Production of Spinach ( Spinacia oleracea) in Maine, United States. PLANT DISEASE 2022; 106:PDIS11212424PDN. [PMID: 35100834 DOI: 10.1094/pdis-11-21-2424-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- A M Batson
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| | - K A Spawton
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| | - R Katz
- Johnny's Selected Seeds, Winslow, ME 04901
| | - L J du Toit
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| |
Collapse
|
4
|
Grunewaldt-Stöcker G, Popp C, Baumann A, Fricke S, Menssen M, Winkelmann T, Maiss E. Observations on early fungal infections with relevance for replant disease in fine roots of the rose rootstock Rosa corymbifera 'Laxa'. Sci Rep 2020; 10:22410. [PMID: 33376252 PMCID: PMC7772344 DOI: 10.1038/s41598-020-79878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Replant disease is a worldwide phenomenon affecting various woody plant genera and species, especially within the Rosaceae. Compared to decades of intensive studies regarding replant disease of apple (ARD), the replant disease of roses (RRD) has hardly been investigated. The etiology of RRD is also still unclear and a remedy desperately needed. In greenhouse pot trials with seedlings of the RRD-sensitive rootstock Rosa corymbifera ‘Laxa’ cultured in replant disease affected soils from two different locations, early RRD symptom development was studied in fine roots. In microscopic analyses we found similarities to ARD symptoms with regards to structural damages, impairment in the root hair status, and necroses and blackening in the cortex tissue. Examinations of both whole mounts and thin sections of fine root segments revealed frequent conspicuous fungal infections in association with the cellular disorders. Particularly striking were fungal intracellular structures with pathogenic characteristics that are described for the first time. Isolated fungi from these tissue areas were identified by means of ITS primers, and many of them were members of the Nectriaceae. In a next step, 35 of these isolates were subjected to a multi-locus sequence analysis and the results revealed that several genera and species were involved in the development of RRD within a single rose plant. Inoculations with selected single isolates (Rugonectria rugulosa and Ilyonectria robusta) in a Perlite assay confirmed their pathogenic relationship to early necrotic host plant reactions, and symptoms were similar to those exhibited in ARD.
Collapse
Affiliation(s)
- G Grunewaldt-Stöcker
- Institute of Horticultural Production Systems, Section Phytomedicine, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - C Popp
- Institute of Horticultural Production Systems, Section Phytomedicine, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - A Baumann
- Institute of Horticultural Production Systems, Section of Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - S Fricke
- Institute of Horticultural Production Systems, Section Phytomedicine, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - M Menssen
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - T Winkelmann
- Institute of Horticultural Production Systems, Section of Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - E Maiss
- Institute of Horticultural Production Systems, Section Phytomedicine, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
5
|
Carmody SM, King KM, Ocamb CM, Fraaije BA, West JS, du Toit LJ. A phylogenetically distinct lineage of Pyrenopeziza brassicae associated with chlorotic leaf spot of Brassicaceae in North America. PLANT PATHOLOGY 2020; 69:518-537. [PMID: 32194292 PMCID: PMC7074063 DOI: 10.1111/ppa.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Light leaf spot, caused by the ascomycete Pyrenopeziza brassicae, is an established disease of Brassicaceae in the United Kingdom (UK), continental Europe, and Oceania (OC, including New Zealand and Australia). The disease was reported in North America (NA) for the first time in 2014 on Brassica spp. in the Willamette Valley of western Oregon, followed by detection in Brassica juncea cover crops and on Brassica rapa weeds in northwestern Washington in 2016. Preliminary DNA sequence data and field observations suggest that isolates of the pathogen present in NA might be distinct from those in the UK, continental Europe, and OC. Comparisons of isolates from these regions using genetic (multilocus sequence analysis, MAT gene sequences, and rep-PCR DNA fingerprinting), pathogenic (B. rapa inoculation studies), biological (sexual compatibility), and morphological (colony and conidial morphology) analyses demonstrated two genetically distinct evolutionary lineages. Lineage 1 comprised isolates from the UK, continental Europe, and OC, and included the P. brassicae type specimen. Lineage 2 contained the NA isolates associated with recent disease outbreaks in the Pacific Northwest region of the USA. Symptoms caused by isolates of the two lineages on B. rapa and B. juncea differed, and therefore "chlorotic leaf spot" is proposed for the disease caused by Lineage 2 isolates of P. brassicae. Isolates of the two lineages differed in genetic diversity as well as sensitivity to the fungicides carbendazim and prothioconazole.
Collapse
Affiliation(s)
- Shannon M. Carmody
- Department of Plant PathologyWashington State UniversityMount VernonWAUSA
| | | | - Cynthia M. Ocamb
- Department of Botany and Plant PathologyOregon State UniversityCorvallisORUSA
| | | | | | - Lindsey J. du Toit
- Department of Plant PathologyWashington State UniversityMount VernonWAUSA
| |
Collapse
|
6
|
Yan H, Zhang J, Ma D, Yin J. qPCR and loop mediated isothermal amplification for rapid detection of Ustilago tritici. PeerJ 2019; 7:e7766. [PMID: 31592112 PMCID: PMC6776072 DOI: 10.7717/peerj.7766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 01/15/2023] Open
Abstract
Loose smut of wheat caused by the basidiomycete fungus Ustilago tritici, a seed-borne disease, is difficult to control because of the expanse of wheat planting area and difficulty in pathogen detection. In this study, real-time fluorescence quantitative PCR (qPCR) and loop-mediated isothermal amplification (LAMP) assays are used to rapidly amplify the DNA of U. tritici. Five pairs of primers for qPCR and two series primers for LAMP were designed. Primarily, the specificity of the primer was assessed by using genomic DNA of U. tritici, Fusarium graminearum, Blumeria graminis, Rhizoctonia cerealis, Puccinia striiformis, Bipolaris sorokiniana, and Alternaria solani as templates. Further, the amplification systems were optimized. Finally, the sensitivity of qPCR and LAMP assays were evaluated. The results showed that the primer Y-430 F/R, Y-307 F/R, Y-755 F/R, and Y-139 F/R for qPCR and primers L-139 and L-988 for LAMP could be used for U. tritici detection. In the sensitivity test, the detection limit of qPCR assay was identified as 10 pg μL−1 of genomic DNA, the detection limit for LAMP assay was 100 fg μL−1. We successfully performed qPCR and LAMP assays on wheat loose smut wheat samples. This paper establishes two methods for U. tritici detection, which can be used for diagnosis of wheat loose smut in the laboratory and in the field.
Collapse
Affiliation(s)
- Hanwen Yan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agricultural, Yangtze University, Jingzhou, Hubei, China
| | - Jian Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agricultural, Yangtze University, Jingzhou, Hubei, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agricultural, Yangtze University, Jingzhou, Hubei, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agricultural, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
McTaggart AR, Shivas RG, Boekhout T, Oberwinkler F, Vánky K, Pennycook SR, Begerow D. Mycosarcoma ( Ustilaginaceae), a resurrected generic name for corn smut ( Ustilago maydis) and its close relatives with hypertrophied, tubular sori. IMA Fungus 2016; 7:309-315. [PMID: 27990337 PMCID: PMC5159601 DOI: 10.5598/imafungus.2016.07.02.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/13/2023] Open
Abstract
Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis, Tolyposporella pachycarpa, Ustilago bouriquetii and U. maydis, occupy a unique phylogenetic position within the Ustilaginaceae. A previously introduced monotypic generic name typified by U. maydis, Mycosarcoma, is available to accommodate these species, which resolves one component of polyphyly for Ustilagos.lat. in Ustilaginaceae. An emended description of Mycosarcoma is provided to reflect the morphological synapomorphies of this monophyletic group. A specimen of Ustilago maydis that has had its genome sequenced is designated as a neotype for this species. Taxonomic stability will further be provided by a forthcoming proposal to conserve the name Uredo maydis over Lycoperdon zeae, which has priority by date, in order to preserve the well-known epithet maydis.
Collapse
Affiliation(s)
- Alistair R McTaggart
- Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20, University of Pretoria, Pretoria, 0028, South Africa; Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce 2617, Australia
| | - Roger G Shivas
- Plant Pathology Herbarium, Biosecurity Queensland, Department of Agriculture and Fisheries, GPO Box 267, Brisbane 4001, Queensland, Australia
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity (CBS-KNAW), Utrecht, The Netherlands; Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam
| | - Franz Oberwinkler
- Eberhard-Karls Universität, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Kálmán Vánky
- Herbarium Ustilaginales Vánky (HUV), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany
| | - Shaun R Pennycook
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland 1142, New Zealand
| | - Dominik Begerow
- Ruhr-Universität Bochum, Geobotanik, ND 03/174, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Gao L, Feng C, Li B, Liu T, Liu B, Chen W. Detection of Tilletia controversa using immunofluorescent monoclonal antibodies. J Appl Microbiol 2014; 118:497-505. [PMID: 25421490 DOI: 10.1111/jam.12703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022]
Abstract
AIMS Tilletia controversa is an internationally quarantined pathogenic fungus that causes dwarf bunt of wheat and is similar to Tilletia caries in both teliospore morphology and genetic structure. This study developed a rapid and sensitive immunofluorescence method for differentiating the teliospores of T. controversa from T. caries. METHODS AND RESULTS The method utilizes monoclonal antibody D-1 against teliospores of T. controversa as well as a PE-Cy3-conjugated goat anti-mouse antibody (overlapping light excitation of 495 and 555 nm). The orange cycle fluorescent signal was stronger against T. controversa teliospores in the outer spore wall and net ridge, whereas only the green signal was observed for the protoplasm of T. caries teliospores. The detection limit of this method was 2.0 μg ml(-1) of the D-1 monoclonal antibody. CONCLUSION This study describes the production and diagnostic application of a novel mouse monoclonal antibody specific to T. controversa teliospores. SIGNIFICANCE AND IMPACT OF THE STUDY This method could be used for the on-site identification of T. controversa teliospores in the near future and will help in selecting fungicides to control dwarf bunt of wheat as further technical developments are achieved.
Collapse
Affiliation(s)
- L Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | | | | | | | | |
Collapse
|
9
|
Hynes SS, Chaudhry O, Providenti MA, Smith ML. Development of AFLP-derived, functionally specific markers for environmental persistence studies of fungal strains. Can J Microbiol 2006; 52:451-61. [PMID: 16699570 DOI: 10.1139/w05-140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to rapidly identify and quantify a microbial strain in a complex environmental sample has widespread applications in ecology, epidemiology, and industry. In this study, we describe a rapid method to obtain functionally specific genetic markers that can be used in conjunction with standard or real-time polymerase chain reaction (PCR) to determine the abundance of target fungal strains in selected environmental samples. The method involves sequencing of randomly cloned AFLP (amplified fragment length polymorphism) products from the target organism and the design of PCR primers internal to the AFLP fragments. The strain-specific markers were used to determine the fate of three industrially relevant fungi, Aspergillus niger, Aspergillus oryzae, and Chaetomium globosum, during a 4 month soil microcosm experiment. The persistence of each of the three fungal strains inoculated separately into intact soil microcosms was determined by PCR analyses of DNA directly extracted from soil. Presence and absence data based on standard PCR and quantification of the target DNA by real-time PCR showed that all three strains declined after inoculation (approximately 14-, 32-, and 4-fold for A. niger, A. oryzae, and C. globosum, respectively) but remained detectable at the end of the experiment, suggesting that these strains would survive for extended periods if released into nature.
Collapse
Affiliation(s)
- S S Hynes
- Institute of Biology, Carleton University, Ottowa, ON, Canada
| | | | | | | |
Collapse
|
10
|
Stoll M, Piepenbring M, Begerow D, Oberwinkler F. Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-094] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological characters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae.Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi.
Collapse
|
11
|
Rodrigues MG, Fonseca Á. Molecular systematics of the dimorphic ascomycete genus Taphrina. Int J Syst Evol Microbiol 2003; 53:607-616. [PMID: 12710634 DOI: 10.1099/ijs.0.02437-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ascomycete genus Taphrina Fries comprises nearly 100 species recognized by their mycelial states when parasitic on different vascular plants. Whereas the filamentous state is strictly phytoparasitic, the yeast state is saprobic and can be cultured on artificial media. Taphrina species are differentiated mainly on the basis of host range and geographical distribution, type and site of infection and morphology of the sexual stage in infected tissue. However, there has been little progress in the systematics of the genus in recent years, mainly because of the scarcity of molecular studies and available cultures. The main aim of the present study was the reappraisal of species boundaries in Taphrina based on the genetic characterization of cultures (yeast states) that represent about one-third of the currently recognized species. The molecular methods used were (i) PCR fingerprinting using single primers for microsatellite regions and (ii) determination of nucleotide sequences of two approx. 600 bp nuclear rDNA regions, the 5' end of the 26S rRNA gene (D1/D2 domains) and the internal transcribed spacer region (which includes the 5.8S rRNA gene). Sequencing results confirmed the monophyly of the genus (with the probable exclusion of Taphrina vestergrenii) and the combined analysis of the two methods corroborated, in most cases, separation of species defined on the basis of conventional criteria. However, genetic heterogeneity was found within some species and conspecificity was suggested for strains that have been deemed to represent distinct species. Sequences from the ITS region displayed a higher degree of divergence than those of the D1/D2 region between closely related species, but were relatively conserved within species (> 99% identity) and were thus more useful for the effective differentiation of Taphrina species. The results further allowed other topics to be addressed such as the correlation between the molecular phylogenetic clustering of certain species and the respective host plant family and the significance of molecular methods in the accurate diagnosis of the different diseases caused by Taphrina species.
Collapse
Affiliation(s)
- Manuel G Rodrigues
- Centro de Recursos Microbiológicos (CREM), Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Álvaro Fonseca
- Centro de Recursos Microbiológicos (CREM), Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Hu GG, Linning R, Bakkeren G. Sporidial mating and infection process of the smut fungus,Ustilago hordei, in susceptible barley. ACTA ACUST UNITED AC 2002. [DOI: 10.1139/b02-098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ustilago hordei (Pers.) Lagerh. causes covered smut of barley and oats. Sporidial mating and the infection process on compatible barley plants, cv. Hannchen, were investigated using light microscopy and scanning and transmission electron microscopy. Within 2 h after mixing of sporidia of opposite mating types on water agar, polar conjugation tubes emerged that subsequently fused, producing infection hyphae at the junctions. Similar events occurred on germinated barley shoots, although sporidia regularly produced several conjugation tubes, of which only one was involved in mating. Tubes emerging from the sides of cells were also observed. Infection hyphae emerged from either the conjugation tube or conjugated cell body. Hyphae elongated along the shoot surface until characteristic crook and appressorium-like structures were formed. An invading hypha emerged beneath this structure and directly penetrated the underlying epidermal cell. Hyphae extended both intra- and inter-cellularly into tissues, without much branching, before becoming established in the shoot meristematic region. Plant plasma membranes remained intact during pathogen ingress and an electron-dense matrix of unknown origin appeared in the interface between plant plasma membrane and invading hypha. A large fungal biomass was generated in the host spike tissue at 4263 days postinoculation during the development of the floral meristem.Key words: Hordeum vulgare, pathogen, sporidia, teliospores, ultrastructure, Ustilaginales.
Collapse
|