1
|
Scaccini D, Bartolozzi L, Zilioli M, Di Giulio A, Ruzzier E. Distribution of the genus Platycerus Geoffroy (Coleoptera, Lucanidae) in Italy. Biodivers Data J 2024; 12:e127088. [PMID: 38974673 PMCID: PMC11226855 DOI: 10.3897/bdj.12.e127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Background Stag beetles are saproxylic species that are associated with deadwood in the larval stage and play an important role in forest ecosystem dynamics. In Italy, Platyceruscaprea and Platyceruscaraboides are two small, elusive stag beetle species, whose known distribution is often limited or referring to old records. New information The present contribution increases the knowledge on the Italian distribution of P.caprea and P.caraboides, adding 70% more sites when compared to previously published records. Ecological traits, especially related to the altitude-elevation distribution in Italy, are also described for these saproxylic beetles.
Collapse
Affiliation(s)
- Davide Scaccini
- Department of Agronomy, Food, Natural Resources, Animals and Environment – University of Padua, Legnaro, Padua, ItalyDepartment of Agronomy, Food, Natural Resources, Animals and Environment – University of PaduaLegnaro, PaduaItaly
| | - Luca Bartolozzi
- Museo Zoologico "La Specola", Florence, ItalyMuseo Zoologico "La Specola"FlorenceItaly
| | - Michele Zilioli
- Natural History Museum, Corso Venezia, Milan, ItalyNatural History Museum, Corso VeneziaMilanItaly
| | - Andrea Di Giulio
- Department of Science, Roma Tre University, viale G. Marconi 446, Rome, ItalyDepartment of Science, Roma Tre University, viale G. Marconi 446RomeItaly
- NBFC, National Biodiversity Future Center, Palermo, ItalyNBFC, National Biodiversity Future CenterPalermoItaly
| | - Enrico Ruzzier
- Department of Science, Roma Tre University, viale G. Marconi 446, Rome, ItalyDepartment of Science, Roma Tre University, viale G. Marconi 446RomeItaly
- NBFC, National Biodiversity Future Center, Palermo, ItalyNBFC, National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
2
|
Zhu XJ, Zhang SN, Watanabe K, Kawakami K, Kubota N, Takagi E, Tanahashi M, Wen XJ, Kubota K. Diverse Heat Tolerance of the Yeast Symbionts of Platycerus Stag Beetles in Japan. Front Microbiol 2022; 12:793592. [PMID: 35069489 PMCID: PMC8776712 DOI: 10.3389/fmicb.2021.793592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Platycerus (Coleoptera: Lucanidae) is a small stag beetle group, which is adapted to cool-temperate deciduous broad-leaved forests in East Asia. Ten Platycerus species in Japan form a monophyletic clade endemic to Japan and inhabit species-specific climatic zones. They are reported to have co-evolutionary associations with their yeast symbionts of the genus Sheffersomyces based on host cytochrome oxidase subunit I (COI) and yeast intergenic spacer (IGS) phylogenies. Here we examined the heat tolerances of the yeast colonies isolated from the mycangia of 37 females belonging ten Japanese Platycerus species. The upper limits of growth and survival temperatures of each colony were decided by cultivating it at ten temperature levels between 17.5 and 40°C. Although both temperatures varied during 25.0–31.25°C, the maximum survival temperatures (MSTs) were a little higher than the maximum growth temperatures (MGTs) in 16 colonies. Pearson’s correlations between these temperatures and environmental factors (elevation and 19 bioclimatic variables from Worldclim database) of host beetle collection sites were calculated. These temperatures were significantly correlated with elevation negatively, the maximum temperature of the warmest month (Bio5) positively, and some precipitative variables, especially in the warm season (Bio12, 13, 16, 18) negatively. Sympatric Platycerus kawadai and Platycerus albisomni share the same lineage of yeast symbionts that exhibit the same heat tolerance, but the elevational lower range limit of P. kawadai is higher than that of P. albisomni. Based on the field survey in their sympatric site, the maximum temperature of host wood of P. kawadai larvae is higher about 2–3°C than that of P. albisomni larvae in the summer, which may restrict the elevational range of P. kawadai to higher area. In conclusion, it is suggested that the heat tolerance of yeast symbionts restricts the habitat range of their host Platycerus species or/and that the environmental condition that host Platycerus species prefers affect the heat tolerance of its yeast symbionts.
Collapse
Affiliation(s)
- Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Sheng-Nan Zhang
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kana Watanabe
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kako Kawakami
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | - Etsuro Takagi
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan.,Department of Tourism Science, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Masahiko Tanahashi
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Xiu-Jun Wen
- Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Ueki G, Zhang SN, Zhu XJ, Wen XJ, Tojo K, Kubota K. Lateral Transmission of Yeast Symbionts Among Lucanid Beetle Taxa. Front Microbiol 2022; 12:794904. [PMID: 34970248 PMCID: PMC8712881 DOI: 10.3389/fmicb.2021.794904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
To deepen understanding the evolutionary process of lucanid–yeast association, the lateral transmission process of yeast symbionts among stag beetle genera Platycerus and Prismognathus around the border between Japan and South Korea was estimated based on molecular analyses and species distribution modelings. Phylogenetic analyses were based on yeast ITS and IGS sequences and beetle COI sequences using Prismognathus dauricus from the Tsushima Islands and Pr. angularis from Kyushu, Japan, as well as other sequence data from our previous studies. The range overlap based on the species distribution model (SDM) and differentiation in ecological space were analyzed. Based on the IGS sequences, Clade II yeast symbionts were shared by Platycerus hongwonpyoi and Pr. dauricus in South Korea and the Tsushima Islands, and Platycerus viridicuprus in Japan. Clade III yeasts were shared by Pr. dauricus from the Tsushima Islands and Pr. angularis in Japan. During the Last Interglacial period when the land bridge between Japan and the Korean Peninsula existed, range overlap was predicted to occur between Pl. viridicuprus and Pr. dauricus in Kyushu and between Pr. dauricus and Pr. angularis in Kyushu and the Tsushima Islands. The ecological space of Pl. hongwonpyoi was differentiated from that of Pl. viridicuprus and Pr. angularis. We demonstrated the paleogeographical lateral transmission process of Scheffersomyces yeast symbionts among lucanid genera and species: putative transmission of yeasts from Pr. dauricus to Pl. viridicuprus in Kyushu and from Pr. angularis to Pr. dauricus in Kyushu or the Tsushima Islands. We also found that the yeast symbionts are likely being replaced in Pr. dauricus on the Tsushima Islands. We present novel estimates of the lateral transmission process of microbial symbionts based on phylogenetic, SDM and environmental analyses among lucanid beetles.
Collapse
Affiliation(s)
- Gaku Ueki
- Department of Biology, Graduate Faculty of Science, Shinshu University, Matsumoto, Japan
| | - Sheng-Nan Zhang
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan.,Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiu-Jun Wen
- Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Koji Tojo
- Department of Biology, Graduate Faculty of Science, Shinshu University, Matsumoto, Japan
| | - Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
4
|
Wan X, Jiang Y, Cao Y, Sun B, Xiang X. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis fallaciosa (Coleoptera, Lucanidae). Animals (Basel) 2020; 10:ani10122352. [PMID: 33317133 PMCID: PMC7764088 DOI: 10.3390/ani10122352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Intestinal microbiota play crucial roles for their hosts. Odontolabis fallaciosa shows striking sexual dimorphism and male trimorphism, which represents an interesting system to study their gut microbiota. We have compared the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa. The gut bacterial community structure was significantly different between males and females. The females were associated with higher bacterial alpha-diversity relative to males. Large males had a higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which contributed to nutritional efficiency. The results increased our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among three male morphs, which might reveal the relationship among the gut microbiota, nutrition level, and phenotypic evolution of the stag beetle. Abstract Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota, which might play an indispensable role in shaping the health of their hosts. The aim of this study was to investigate the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut bacterial community structure was significantly different between males and females, suggesting that sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher bacterial alpha-diversity than males. There was little difference in gut bacterial community structure among the three male morphs. However, compared to medium and small males, large individuals were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the three male morphs.
Collapse
|
5
|
Kubota K, Watanabe K, Zhu XJ, Kawakami K, Tanahashi M, Fukatsu T. Evolutionary Relationship Between Platycerus Stag Beetles and Their Mycangium-Associated Yeast Symbionts. Front Microbiol 2020; 11:1436. [PMID: 32695086 PMCID: PMC7338584 DOI: 10.3389/fmicb.2020.01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Adult females of stag beetles (Coleoptera: Lucanidae) possess an ovipositor-associated mycangium for conveying symbiotic microorganisms. In most lucanid species, their mycangium contains yeast symbionts of the genus Scheffersomyces Kurtzman and Suzuki that are known for their xylose-fermenting capability. The lucanid genus Platycerus Geoffroy, 1762 is a group of small blue stag beetles, in which ten Japanese species constitute a monophyletic clade. Here we examined the evolutionary relationships of these Japanese Platycerus species and their yeast symbionts, together with a Korean Platycerus species and other lucanid species as outgroup taxa. Based on the internal transcribed spacer (ITS) and the intergenic spacer (IGS) sequences, the yeast symbionts of all Platycerus species were closely related to each other and formed a monophyletic clade. There is no variation in ITS sequences of the yeast symbionts of the Japanese Platycerus species. Based on IGS sequences, the yeast symbionts formed clusters that largely reflected the geographic distribution of the host insects, being shared by sympatric Platycerus species except for P. delicatulus Lewis, 1883 and P. viridicuprus Kubota & Otobe, The symbiont phylogeny was globally not congruent with the host COI-based phylogeny, although some local congruences were observed. Statistically significant correlations were detected between the genetic distances of COI sequences of the host insects and those of IGS sequences of the yeast symbionts in Japan. These results suggest that, at least to some extent, the host insects and the yeast symbionts may have experienced co-evolutionary associations. While the Japanese Platycerus species formed a monophyletic clade in the COI phylogeny, the yeast symbionts of Japanese P. viridicuprus were very closely related to those of Korean P. hongwonpyoi Imura & Choe, 1989, suggesting the possibility that a recent secondary contact of the two beetle species during a marine withdrawal, e.g., in the last glacial period, might have resulted in an inter-specific horizontal transmission of the yeast symbiont.
Collapse
Affiliation(s)
- Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kana Watanabe
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kako Kawakami
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | - Masahiko Tanahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Symbiotic yeasts from the mycangium, larval gut and woody substrate of an African stag beetle Xiphodontus antilope (Coleoptera: Lucanidae). Antonie van Leeuwenhoek 2020; 113:1123-1134. [PMID: 32318983 DOI: 10.1007/s10482-020-01418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Female stag beetles (Lucanidae) possess internal mycangia to maintain microbial cultures. Yeasts from these mycangia may help with larval nutrition in nutrient poor woody substrates, but only a few Lucanidae taxa have been studied and all reports originate from Europe and Asia. We identify the first mycangial yeasts of a South African endemic Lucanidae beetle, Xiphodontus antilope, using nuclear ribosomal RNA and ITS DNA sequence data. In addition we identified yeasts from the larval gut, fecal matter, frass and woody substrate surrounding larvae and pupae. The mycangium of X. antilope was confined to females and is structurally similar to all other Lucanidae. Unlike most Lucanidae that seemingly associate with single species of yeast, or whose mycangia contain yeast monocultures, three yeast species were commonly isolated from X. antilope. Scheffersomyces coipomoensis was the most numerically dominant species on most substrates and in most individuals, but a second, undescribed, Scheffersomyces species was present in high numbers. A third species, also undescribed and unrelated to Scheffersomyces, was recovered from all mycangia but could not be detected in the larval gut, fecal matter, frass or woody substrates. We confirm a close association of Scheffersomyces yeasts with Lucanidae globally, but other taxa may also be involved. We show that the predominant mycangial yeasts also form the predominant yeasts within the larval gut and the woody substrates around the larvae and pupae. This combined external and internal colonization by the same yeasts may provide enhanced opportunities for nutrient acquisition, but this needs validation in future studies.
Collapse
|
7
|
Tanahashi M, Ikeda H, Kubota K. Elementary budget of stag beetle larvae associated with selective utilization of nitrogen in decaying wood. Naturwissenschaften 2018; 105:33. [PMID: 29725830 DOI: 10.1007/s00114-018-1557-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022]
Abstract
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
Collapse
Affiliation(s)
- Masahiko Tanahashi
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Hiroshi Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kôhei Kubota
- Laboratory of Forest Zoology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|