1
|
Sato H, Lain A, Mizuno T, Yamashita S, Hassan JB, Othman KB, Itioka T. Host preference explains the high endemism of ectomycorrhizal fungi in a dipterocarp rainforest. Mol Ecol 2024; 33:e17529. [PMID: 39290075 DOI: 10.1111/mec.17529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Ectomycorrhizal (ECM) fungi are important tree symbionts within forests. The biogeography of ECM fungi remains to be investigated because it is challenging to observe and identify species. Because most ECM plant taxa have a Holarctic distribution, it is difficult to evaluate the extent to which host preference restricts the global distribution of ECM fungi. To address this issue, we aimed to assess whether host preference enhances the endemism of ECM fungi that inhabit dipterocarp rainforests. Highly similar sequences of 175 operational taxonomic units (OTUs) for ECM fungi that were obtained from Lambir Hill's National Park, Sarawak, Malaysia, were searched for in a nucleotide sequence database. Using a two-step binomial model, the probability of presence for the query OTUs and the registration rate of barcode sequences in each country were simultaneously estimated. The results revealed that the probability of presence in the respective countries increased with increasing species richness of Dipterocarpaceae and decreasing geographical distance from the study site (i.e. Lambir). Furthermore, most of the ECM fungi were shown to be endemic to Malaysia and neighbouring countries. These findings suggest that not only dispersal limitation but also host preference are responsible for the high endemism of ECM fungi in dipterocarp rainforests. Moreover, host preference likely determines the areas where ECM fungi potentially expand and dispersal limitation creates distance-decay patterns within suitable habitats. Although host preference has received less attention than dispersal limitation, our findings support that host preference has a profound influence on the global distribution of ECM fungi.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Ajuwin Lain
- Sarawak Biodiversity Centre, Kuching, Sarawak, Malaysia
| | - Takafumi Mizuno
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Satoshi Yamashita
- Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | | | | | - Takao Itioka
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
2
|
Piña Páez CG, Gervers KA, Martin JA, Tabima JF, Luoma DL, Spatafora JW. Suillus hypogaeus: First record of a truffle Suillus. Mycologia 2024; 116:764-774. [PMID: 38976825 DOI: 10.1080/00275514.2024.2361518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/24/2024] [Indexed: 07/10/2024]
Abstract
Suillus (order Boletales) is a diverse genus of epigeous, mushroom-forming fungi native to temperate forests across the Northern Hemisphere; however, some species are also present in areas where Pinaceae has been introduced in the Southern Hemisphere. Unlike the closely related genus Rhizopogon, there are no described hypogeous, sequestrate species of Suillus. Here, we describe Suillus hypogaeus, the first known species of the genus with hypogeous, sequestrate sporocarps. Collections were made on Marys Peak in Benton County, Oregon, USA, at an elevation of 800 m in forests dominated by Pseudotsuga menziesii var. menziesii. The peridium is white, quickly staining pink to purple-reddish where bruised or cut. The gleba is pale yellow when young, becoming purple with maturity, and the basidiospores are obovoid, light yellow in KOH, and amyloid in Melzer's reagent. Multilocus molecular phylogenetic analyses support the placement of S. hypogaeus among the Larix specialists in the spectabilis group of Suillus. Although Larix and Pseudotsuga are sister genera, Larix does not occur on Marys Peak or elsewhere in western Oregon. Suillus hypogaeus, therefore, represents both an independent origin of the hypogeous, sequestrate sporocarp within the Boletales and an independent host shift between Larix and Pseudotsuga within the genus Suillus.
Collapse
Affiliation(s)
- Carolina G Piña Páez
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Kyle A Gervers
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Jessica A Martin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, Massachusetts 01610
| | - Daniel L Luoma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, Oregon 97331
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
3
|
N. M. Furtado A, Leonardi M, Comandini O, Neves MA, C. Rinaldi A. Restinga ectomycorrhizae: a work in progress. F1000Res 2023; 12:317. [PMID: 37265684 PMCID: PMC10230178 DOI: 10.12688/f1000research.131558.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/03/2023] Open
Abstract
Background: The Brazilian Atlantic Forest is one of the most biodiverse terrestrial ecoregions of the world. Among its constituents, restinga vegetation makes a particular case, acting as a buffer zone between the oceans and the forest. Covering some 80% of Brazilian coastline (over 7,300 km in length), restinga is a harsh environment where plants and fungi interact in complex ways that just now are beginning to be unveiled. Ectomycorrhizal symbiosis, in particular, plays a so far ungauged and likely underestimated role. We recently described the morpho-anatomical and molecular features of the ectomycorrhizae formed by several basidiomycetous mycobionts on the host plant Guapira opposita, but the mycorrhizal biology of restinga is still largely unexplored. Here, we report new data on the ectomycorrhizal fungal symbionts of G. opposita, based on the collection of sporomata and ectomycorrhizal root tips in restinga stands occurring in southern Brazil. Methods: To obtain a broader view of restinga mycorrhizal and ecological potential, we compiled a comprehensive and up-to-date checklist of fungal species reported or supposed to establish ectomycorrhizae on restinga-inhabiting host plants, mainly on the basis of field observations. Results: Our list comprises some 726 records, 74 of which correspond to putative ectomycorrhizal taxa specifically associated with restinga. These include several members of Boletaceae, Amanita, Tomentella/ Thelephora, Russula/ Lactifluus, and Clavulina, as well as hypogeous fungi, like the recently described Longistriata flava. Conclusions: Our survey reveals a significant diversity of the restinga ectomycorrhizal mycobiota, indicating the importance of this symbiosis for the ecological functioning of a unique yet poorly known and threatened ecosystem.
Collapse
Affiliation(s)
- Ariadne N. M. Furtado
- Departamento de Botânica, Campus Universitário Reitor João David Ferreira Lima, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-960, Brazil
| | - Marco Leonardi
- Dipartimento di Scienze della Vita, della Salute e dell'Ambiente, Universita degli Studi dell'Aquila, L'Aquila, Abruzzo, I-67100, Italy
| | - Ornella Comandini
- Dipartimento di Scienze Biomediche, Universita degli Studi di Cagliari, Cagliari, Sardinia, I-09042, Italy
| | - Maria Alice Neves
- Departamento de Botânica, Campus Universitário Reitor João David Ferreira Lima, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-960, Brazil
| | - Andrea C. Rinaldi
- Dipartimento di Scienze Biomediche, Universita degli Studi di Cagliari, Cagliari, Sardinia, I-09042, Italy
| |
Collapse
|
4
|
Sugawara R, Shirasuka N, Yamamoto T, Nagamune K, Oguchi K, Maekawa N, Sotome K, Nakagiri A, Ushijima S, Endo N. Two new species of <i>Sistotrema</i> s.l. (<i>Cantharellales</i>) from Japan with descriptions of their ectomycorrhizae. MYCOSCIENCE 2022; 63:102-117. [PMID: 37089627 PMCID: PMC10042317 DOI: 10.47371/mycosci.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 01/14/2023]
Abstract
We describe two new species of resupinate Sistotrema sensu lato (Cantharellales) collected in Japan: S. flavorhizomorphae and S. chloroporum. Both species have urniform basidia with more than four sterigmata and monomitic hyphal system, oil-rich hyphae in subiculum, which is typical for this genus. Sistotrema chloroporum is characterized by poroid hymenophore partly yellowish-green, basidia 4-6-spored, medium-sized basidiospores (4.5-6.5 × 3.5-6 µm), and broadleaf forest habitat. Sistotrema flavorhizomorphae is characterized by hydnoid-irpicoid hymenophore, bright yellowish rhizomorphs, basidia 6-8-spored, small basidiospores (3-3.5 × 2.5-3 µm), and pine forest habitat. Phylogenetic trees inferred from the fungal nrDNA ITS and LSU and the rpb2 sequences supported that both species were distinct and grouped with other ectomycorrhizal Sistotrema and Hydnum species, but their generic boundary was unclear. Mycorrhizae underneath basidiomes of both species were identified and described via molecular techniques. Mycorrhizae of S. chloroporum have similar characteristics to those of other Sistotrema s.l. and Hydnum species, i.e., S. confluens and H. repandum, whereas S. flavorhizomorphae has a distinct morpho-anatomy, for example, a distinct pseudoparenchymatous mantle. Comprehensive characterizations of basidiomes and mycorrhizae improve the taxonomic analysis of mycorrhizal species of Sistotrema s.l.
Collapse
Affiliation(s)
- Ryo Sugawara
- The United Graduate School of Agricultural Sciences, Tottori University
| | - Nana Shirasuka
- Graduate School of Sustainability Science, Tottori University
| | | | | | | | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | | | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
5
|
Avital S, Rog I, Livne-Luzon S, Cahanovitc R, Klein T. Asymmetric belowground carbon transfer in a diverse tree community. Mol Ecol 2022; 31:3481-3495. [PMID: 35451146 PMCID: PMC9325067 DOI: 10.1111/mec.16477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Mycorrhizal fungi can colonize multiple trees of a single or multiple taxa, facilitating bidirectional exchange of carbon between trees. Mycorrhiza-induced carbon transfer was shown in the forest, but it is unknown whether carbon is shared symmetrically among tree species, and if not, which tree species are better donors and which are better recipients. Here we test this question by investigating carbon transfer dynamics among five Mediterranean tree species in a microcosm system, including both ectomycorrhizal (EM) and arbuscular (AM) plants. Trees were planted together in 'community boxes' using natural soil from a mixed forest plot that serves as habitat for all five tree species and their native mycorrhizal fungi. In each box, only the trees of a single species were pulse-labeled with 13 CO2 . We found that carbon transfer was asymmetric, with oak being a better donor, and pistacia and cypress better recipients. Shared mycorrhizal species may have facilitated carbon transfer, but their diversity did not affect the amount, nor timing, of the transfer. Overall, our findings in a microcosm system expose rich, but hidden, belowground interactions in a diverse population of trees and mycorrhizal fungi. The asymmetric carbon exchange among co-habiting tree species could potentially contribute to forest resilience in an uncertain future.
Collapse
Affiliation(s)
- Shifra Avital
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rotem Cahanovitc
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|