1
|
Song G, Li Z. One-Pot Multi-Component Synthesis of Triarylacrylonitriles Directly by Using CaC2
as a Concise Acetylene Source and K4
[Fe(CN)6
] as an Eco-Friendly Cyanide Source. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Geyang Song
- College of Chemistry and Chemical Engineering; Northwest Normal University; 730070 Lanzhou Gansu People's Republic of China
| | - Zheng Li
- College of Chemistry and Chemical Engineering; Northwest Normal University; 730070 Lanzhou Gansu People's Republic of China
| |
Collapse
|
2
|
Wang Q, Yang X, Wu P, Yu Z. Photoredox-Catalyzed C–H Arylation of Internal Alkenes to Tetrasubstituted Alkenes: Synthesis of Tamoxifen. Org Lett 2017; 19:6248-6251. [DOI: 10.1021/acs.orglett.7b03223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoge Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Ping Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Carpenter C, Sorenson RJ, Jin Y, Klossowski S, Cierpicki T, Gnegy M, Showalter HD. Design and synthesis of triarylacrylonitrile analogues of tamoxifen with improved binding selectivity to protein kinase C. Bioorg Med Chem 2016; 24:5495-5504. [PMID: 27647375 DOI: 10.1016/j.bmc.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
The clinical selective estrogen receptor modulator tamoxifen is also a modest inhibitor of protein kinase C, a target implicated in several untreatable brain diseases such as amphetamine abuse. This inhibition and tamoxifen's ability to cross the blood brain barrier make it an attractive scaffold to conduct further SAR studies toward uncovering effective therapies for such diseases. Utilizing the known compound 6a as a starting template and guided by computational tools to derive physicochemical properties known to be important for CNS permeable drugs, the design and synthesis of a small series of novel triarylacrylonitrile analogues have been carried out providing compounds with enhanced potency and selectivity for PKC over the estrogen receptor relative to tamoxifen. Shortened synthetic routes compared to classical procedures have been developed for analogues incorporating a β-phenyl ring, which involve installing dialkylaminoalkoxy side chains first off the α and/or α' rings of a precursor benzophenone and then condensing the resultant ketones with phenylacetonitrile anion. A second novel, efficient and versatile route utilizing Suzuki chemistry has also been developed, which will allow for the introduction of a wide range of β-aryl or β-heteroaryl moieties and side-chain substituents onto the acrylonitrile core. For analogues possessing a single side chain off the α- or α'-ring, novel 2D NMR experiments have been carried out that allow for unambiguous assignment of E- and Z-stereochemistry. From the SAR analysis, one compound, 6c, shows markedly increased potency and selectivity for inhibiting PKC with an IC50 of 80nM for inhibition of PKC protein substrate and >10μM for binding to the estrogen receptor α (tamoxifen IC50=20μM and 222nM, respectively). The data on 6c provide support for further exploration of PKC as a druggable target for the treatment of amphetamine abuse.
Collapse
Affiliation(s)
- Colleen Carpenter
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Roderick J Sorenson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yafei Jin
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Margaret Gnegy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
4
|
Li J, Chen H, Zhang-Negrerie D, Du Y, Zhao K. Synthesis of coumarins via PIDA/I2-mediated oxidative cyclization of substituted phenylacrylic acids. RSC Adv 2013. [DOI: 10.1039/c3ra23188g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|