1
|
Bieniek-Kobuszewska M, Panasiewicz G. Polymorphism Identification in the Coding Sequences (ORFs) of the Porcine Pregnancy-Associated Glycoprotein 2-like Gene Subfamily in Pigs. Genes (Basel) 2024; 15:1149. [PMID: 39336740 PMCID: PMC11431107 DOI: 10.3390/genes15091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Pregnancy-associated glycoproteins (PAGs) are a polygenic family with many scattered genes and pseudogenes resulting from the duplication or fusion of a pseudogene with expression beginning in the trophoblast during the peri-implantation period and continuing in the trophectoderm. In this study, single-nucleotide polymorphism (SNP) and insertion/deletion (InDels) in the open reading frame (nine exons) of crossbreed pigs are reported for the first time. Novel SNPs/InDels were researched using genomic DNA templates isolated from the leukocytes of crossbreed pigs (N = 25), which were amplified, gel-out-purified, and sequenced. Sixteen SNPs and one InDel (g.6961_6966 Ins TGCCAA) were identified in the crossbreed pigs. In silico analysis revealed that among 16 SNPs, only 10 SNPs cause amino acid (aa) substitutions, and InDel codes asparagine (N298) and alanine (A299). The results provide a novel broad-based database (main pattern) that will be critical for future research into the possible correlations between the SNP genotypes of the pPAG2-L subfamily in pigs of various breeds whose reproductive traits are known.
Collapse
Affiliation(s)
- Martyna Bieniek-Kobuszewska
- Voivodeship Sanitary-Epidemiological Station in Olsztyn, Laboratory of Epidemiological and Clinical Research, Department of Virology and Serology, Zolnierska Str. 16, 10-561 Olsztyn, Poland;
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Mulato A, Lansdon E, Aoyama R, Voigt J, Lee M, Liclican A, Lee G, Singer E, Stafford B, Gong R, Murray B, Chan J, Lee J, Xu Y, Ahmadyar S, Gonzalez A, Cho A, Stepan GJ, Schmitz U, Schultz B, Marchand B, Brumshtein B, Wang R, Yu H, Cihlar T, Xu L, Yant SR. Preclinical characterization of a non-peptidomimetic HIV protease inhibitor with improved metabolic stability. Antimicrob Agents Chemother 2024; 68:e0137323. [PMID: 38380945 PMCID: PMC10989020 DOI: 10.1128/aac.01373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species. This compound demonstrates potent inhibitory activity and high on-target selectivity for recombinant HIV-1 protease versus other aspartic proteases tested. In cell culture, GS-9770 inhibits Gag polyprotein cleavage and shows nanomolar anti-HIV-1 potency in primary human cells permissive to HIV-1 infection and against a broad range of HIV subtypes. GS-9770 demonstrates an improved resistance profile against a panel of patient-derived HIV-1 isolates with resistance to atazanavir and darunavir. In resistance selection experiments, GS-9770 prevented the emergence of breakthrough HIV-1 variants at all fixed drug concentrations tested and required multiple protease substitutions to enable outgrowth of virus exposed to escalating concentrations of GS-9770. This compound also remained fully active against viruses resistant to drugs from other antiviral classes and showed no in vitro antagonism when combined pairwise with drugs from other antiretroviral classes. Collectively, these preclinical data identify GS-9770 as a potent, non-peptidomimetic once-daily oral HIV PI with potential to overcome the persistent requirement for pharmacological boosting with this class of antiretroviral agents.
Collapse
Affiliation(s)
- Andrew Mulato
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Eric Lansdon
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Ron Aoyama
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Johannes Voigt
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Michael Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Albert Liclican
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Gary Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Eric Singer
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Brian Stafford
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Ruoyu Gong
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Julie Chan
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Johnny Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Yili Xu
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Shekeba Ahmadyar
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Ana Gonzalez
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - Aesop Cho
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - George J. Stepan
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Uli Schmitz
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Brian Schultz
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Bruno Marchand
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Boris Brumshtein
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Ruth Wang
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Helen Yu
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Tomas Cihlar
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Lianhong Xu
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - Stephen R. Yant
- Department of Virology, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
3
|
Li S, Pritchard DM, Yu LG. Galectin-3 promotes secretion of proteases that decrease epithelium integrity in human colon cancer cells. Cell Death Dis 2023; 14:268. [PMID: 37055381 PMCID: PMC10102123 DOI: 10.1038/s41419-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Galectin-3 is a galactoside-binding protein that is commonly overexpressed in many epithelial cancers. It is increasingly recognized as a multi-functional, multi-mode promoter in cancer development, progression, and metastasis. This study reports that galectin-3 secretion by human colon cancer cells induces cancer cell secretion, in an autocrine/paracrine manner, of a number of proteases including cathepsin-B, MMP-1 and MMP-13. The secretion of these proteases causes disruption of epithelial monolayer integrity, increases its permeability and promotes tumour cell invasion. This effect of galectin-3 is shown to be mediated through induction of cellular PYK2-GSK3α/β signalling and can be prevented by the presence of galectin-3 binding inhibitors. This study thus reveals an important mechanism in galectin-3-mediated promotion of cancer progression and metastasis. It provides further evidence to the increased realization of galectin-3 as a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Akishev Z, Aktayeva S, Kiribayeva A, Abdullayeva A, Baltin K, Mussakhmetov A, Tursunbekova A, Ramankulov Y, Khassenov B. Obtaining of Recombinant Camel Chymosin and Testing Its Milk-Clotting Activity on Cow's, Goat's, Ewes', Camel's and Mare's Milk. BIOLOGY 2022; 11:1545. [PMID: 36358248 PMCID: PMC9687658 DOI: 10.3390/biology11111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023]
Abstract
In the cheese-making industry, commonly chymosin is used as the main milk-clotting enzyme. Bactrian camel (Camelus bactrianus) chymosin (BacChym) has a milk-clotting activity higher than that of calf chymosin for cow's, goat's, ewes', mare's and camel's milk. A procedure for obtaining milk-clotting reagent based on recombinant camel chymosin is proposed here. Submerged fermentation by a recombinant yeast (Pichia pastoris GS115/pGAPZαA/ProchymCB) was implemented in a 50 L bioreactor, and the recombinant camel chymosin was prepared successfully. The activity of BacChym in yeast culture was 174.5 U/mL. The chymosin was concentrated 5.6-fold by cross-flow ultrafiltration and was purified by ion exchange chromatography. The activity of the purified BacChym was 4700 U/mL. By sublimation-drying with casein peptone, the BacChym powder was obtained with an activity of 36,000 U/g. By means of this chymosin, cheese was prepared from cow's, goat's, ewes', camel's and mare's milk with a yield of 18%, 17.3%, 15.9%, 10.4% and 3%, respectively. Thus, the proposed procedure for obtaining a milk-clotting reagent based on BacChym via submerged fermentation by a recombinant yeast has some prospects for biotechnological applications. BacChym could be a prospective milk-clotting enzyme for different types of milk and their mixtures.
Collapse
Affiliation(s)
- Zhiger Akishev
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan 010008, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Assel Kiribayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Aliya Abdullayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Arman Mussakhmetov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Annelya Tursunbekova
- Corporate Development and Strategy Department, S. Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, Nur-Sultan 010001, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
5
|
Nicosia FD, Puglisi I, Pino A, Caggia C, Randazzo CL. Plant Milk-Clotting Enzymes for Cheesemaking. Foods 2022; 11:871. [PMID: 35327293 PMCID: PMC8949083 DOI: 10.3390/foods11060871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
The reduced availability and the increasing prices of calf rennet, coupled to the growing global demand of cheese has led, worldwide, to explore alternative clotting enzymes, capable to replace traditional rennet, during the cheesemaking. In addition, religious factors and others related to the vegetarianism of some consumers, have led to alternative rennet substitutes. Nowadays, several plant-derived milk-clotting enzymes are available for cheesemaking technology. Many efforts have also been made to compare their effects on rheological and sensory properties of cheese to those arising from animal rennet. However, vegetable clotting enzymes are still partially suitable for cheesemaking, due to excessive proteolytic activity, which contribute to bitter flavor development. This review provides a literature overview of the most used vegetable clotting enzymes in cheese technology, classified according to their protease class. Finally, clotting and proteolytic activities are discussed in relation to their application on the different cheesemaking products.
Collapse
Affiliation(s)
- Fabrizio Domenico Nicosia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
| | - Ivana Puglisi
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Challenging Sustainable and Innovative Technologies in Cheese Production: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well known that cheese yield and quality are affected by animal genetics, milk quality (chemical, physical, and microbiological), production technology, and the type of rennet and dairy cultures used in production. Major differences in the same type of cheese (i.e., hard cheese) are caused by the rennet and dairy cultures, which affect the ripening process. This review aims to explore current technological advancements in animal genetics, methods for the isolation and production of rennet and dairy cultures, along with possible applications of microencapsulation in rennet and dairy culture production, as well as the challenge posed to current dairy technologies by the preservation of biodiversity. Based on the reviewed scientific literature, it can be concluded that innovative approaches and the described techniques can significantly improve cheese production.
Collapse
|
7
|
Azadi MA, Hemmati R, Homaei A, Khalaji-Pirbalouty V. A psychrophilic caseinolytic aspartic protease from the freshwater amphipod Gammarus bakhteyaricus for application in milk coagulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:3823. [PMID: 34771379 PMCID: PMC8587287 DOI: 10.3390/polym13213823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miroslava Nedyalkova
- Department of Inorganic Chemistry, University of Sofia “St. Kl. Okhridski”, 1164 Sofia, Bulgaria;
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
9
|
Extraction, purification and characterization of a thermally stable aspartic protease from freshwater shrimp Gammarus sp. with a high catalytic efficiency. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
11
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
12
|
Akishev Z, Kiribayeva A, Mussakhmetov A, Baltin K, Ramankulov Y, Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon 2021; 7:e07137. [PMID: 34113734 PMCID: PMC8170492 DOI: 10.1016/j.heliyon.2021.e07137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Camel chymosin can be efficiently employed to produce cheese. Traditionally the rennet enzyme produced by the glands of the fourth stomach of ruminant animals (abomassum) is used in cheese making. Full-length Camelus bactrianus (Bactrian camel) prochymosin gene was synthesized and constitutively expressed in Pichia pastoris cells under glyceraldehydes-3-phosphate dehydrogenase (GAP) promoter. It was purified by sequential anion and cation exchange chromatography. SDS-PAGE analysis resulted in two bands, approximately 42 and 35 kDa. The 42 kDa band vanished when the sample was treated with endoglycosidase H, indicating that the recombinant protein is partially glycosylated. Optimal pH for the activity of the highest-purity recombinant chymosin was pH 4.5 for cow's milk and pH 4.0 for mare's milk. The range 45-50 °C and 70 °C for cow's and mare's milk types, respectively, was found to be the most appropriate for maximal relative milk-clotting activity. Concentration of CaCl2 that ensured the stability of the chymosin milk-clotting activity was between 20 and 50 mM with an optimum at 30 mM. Milk-clotting activity of camel recombinant chymosin and ability to make curd was successfully tested on fresh mare's milk. Pichia pastoris strain with integrated camel chymosin gene showed high productivity of submerged fermentation in bioreactor with milk-clotting activity 1412 U/mL and 80 mg/L enzyme yield. These results suggest that the constitutive expression of the camel chymosin Camelus bactrianus in the yeast Pichia pastoris has good prospects for practical applications.
Collapse
Affiliation(s)
- Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
- L.N.Gumilyov Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan, 010008, Kazakhstan
| | - Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
- L.N.Gumilyov Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan, 010008, Kazakhstan
| | - Arman Mussakhmetov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
13
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|
14
|
Dong Z, Yang S, Lee BH. Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci Rep 2021; 11:693. [PMID: 33436802 PMCID: PMC7804941 DOI: 10.1038/s41598-020-80028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aspergillus niger has the ability to produce a large variety of proteases, which are of particular importance for protein digestion, intracellular protein turnover, cell signaling, flavour development, extracellular matrix remodeling and microbial defense. However, the A. niger degradome (the full repertoire of peptidases encoded by the A. niger genome) available is not accurate and comprehensive. Herein, we have utilized annotations of A. niger proteases in AspGD, JGI, and version 12.2 MEROPS database to compile an index of at least 232 putative proteases that are distributed into the 71 families/subfamilies and 26 clans of the 6 known catalytic classes, which represents ~ 1.64% of the 14,165 putative A. niger protein content. The composition of the A. niger degradome comprises ~ 7.3% aspartic, ~ 2.2% glutamic, ~ 6.0% threonine, ~ 17.7% cysteine, ~ 31.0% serine, and ~ 35.8% metallopeptidases. One hundred and two proteases have been reassigned into the above six classes, while the active sites and/or metal-binding residues of 110 proteases were recharacterized. The probable physiological functions and active site architectures of these peptidases were also investigated. This work provides a more precise overview of the complete degradome of A. niger, which will no doubt constitute a valuable resource and starting point for further experimental studies on the biochemical characterization and physiological roles of these proteases.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid-Line of South-To-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Byong H Lee
- Department of Microbiology/Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Stasic AJ, Chasen NM, Dykes EJ, Vella SA, Asady B, Starai VJ, Moreno SNJ. The Toxoplasma Vacuolar H +-ATPase Regulates Intracellular pH and Impacts the Maturation of Essential Secretory Proteins. Cell Rep 2020; 27:2132-2146.e7. [PMID: 31091451 PMCID: PMC6760873 DOI: 10.1016/j.celrep.2019.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-proton ATPases (V-ATPases) are conserved complexes that couple the hydrolysis of ATP to the pumping of protons across membranes. V-ATPases are known to play diverse roles in cellular physiology. We studied the Toxoplasma gondii V-ATPase complex and discovered a dual role of the pump in protecting parasites against ionic stress and in the maturation of secretory proteins in endosomal-like compartments. Toxoplasma V-ATPase subunits localize to the plasma membrane and to acidic vesicles, and characterization of conditional mutants of the a1 subunit highlighted the functionality of the complex at both locations. Microneme and rhoptry proteins are required for invasion and modulation of host cells, and they traffic via endosome-like compartments in which proteolytic maturation occurs. We show that the V-ATPase supports the maturation of rhoptry and microneme proteins, and their maturases, during their traffic to their corresponding organelles. This work underscores a role for V-ATPases in regulating virulence pathways. Stasic et al. characterize the function of the vacuolar proton ATPase in the life cycle of Toxoplasma gondii, a widespread parasite that infects almost one-third of the world’s population. The work presents molecular evidence of the pump’s role in the synthesis of virulence factors of a highly successful pathogen.
Collapse
Affiliation(s)
- Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Nathan M Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Eric J Dykes
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602-7400, USA.
| |
Collapse
|
16
|
Xu J, Liu RD, Bai SJ, Hao HN, Yue WW, Xu YXY, Long SR, Cui J, Wang ZQ. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Negl Trop Dis 2020; 14:e0008269. [PMID: 32339171 PMCID: PMC7205320 DOI: 10.1371/journal.pntd.0008269] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T. spiralis aspartic protease has been identified in excretion/secretion (ES) proteins, but its roles in larval invasion are unclear. The aim of this study was to characterize T. spiralis aspartic protease-2 (TsASP2) and assess its roles in T. spiralis invasion into intestinal epithelial cells (IECs) using RNAi. METHODOLOGY/PRINCIPAL FINDINGS Recombinant TsASP2 (rTsASP2) was expressed and purified. The native TsASP2 of 43 kDa was recognized by anti-rTsASP2 serum in all worm stages except newborn larvae (NBL), and qPCR indicated that TsASP2 transcription was highest at the stage of intestinal infective larvae (IIL). IFA results confirmed that TsASP2 was located in the hindgut, midgut and muscle cells of muscle larvae (ML) and IIL and intrauterine embryos of the female adult worm (AW), but not in NBL. rTsASP2 cleaved several host proteins (human hemoglobin (Hb), mouse Hb, collagen and IgM). The proteolytic activity of rTsASP2 was host-specific, as it hydrolyzed mouse Hb more efficiently than human Hb. The enzymatic activity of rTsASP2 was significantly inhibited by pepstatin A. The expression levels of TsASP2 mRNA and protein were significantly suppressed by RNAi with 5 μM TsASP2-specific siRNA. Native aspartic protease activity in ML crude proteins was reduced to 54.82% after transfection with siRNA. Larval invasion of IECs was promoted by rTsASP2 and inhibited by anti-rTsASP2 serum and siRNA. Furthermore, cell monolayer damage due to larval invasion was obviously alleviated when siRNA-treated larvae were used. The adult worm burden, length of adult worms and female fecundity were clearly reduced in mice challenged using siRNA-treated ML relative to the PBS group. CONCLUSIONS rTsASP2 possesses the enzymatic activity of native aspartic protease and facilitates T. spiralis invasion of host IECs.
Collapse
Affiliation(s)
- Jia Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| |
Collapse
|
17
|
Islam R, Sviridov DO, Drake SK, Tunyi J, Abdoulaeva G, Freeman LA, Pastor RW, Remaley AT. Incorporation of α-methylated amino acids into Apolipoprotein A-I mimetic peptides improves their helicity and cholesterol efflux potential. Biochem Biophys Res Commun 2020; 526:349-354. [PMID: 32222278 DOI: 10.1016/j.bbrc.2020.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 01/01/2023]
Abstract
Apolipoprotein A-I (ApoA-I) mimetic peptides are potential therapeutic agents for promoting the efflux of excess cellular cholesterol, which is dependent upon the presence of an amphipathic helix. Since α-methylated Ala enhances peptide helicity, we hypothesized that incorporating other types of α-methylated amino acids into ApoA-I mimetic peptides may also increase their helicity and cholesterol efflux potential. The last helix of apoA-I, peptide 'A' (VLESFKVSFLSALEEYTKKLNT), was used to design peptides containing a single type of α-methylated amino acid substitution (Ala/Aα, Glu/Dα, Lys/Kα, Leu/Lα), as well as a peptide containing both α-methylated Lys and Leu (6α). Depending on the specific residue, the α-helical content as measured by CD-spectroscopy and calculated hydrophobic moments were sometimes higher for peptides containing other types of α-methylated amino acids than those with α-methylated Ala. In ABCA1-transfected cells, cholesterol efflux to the peptides showed the following order of potency: 6α>Kα≈Lα≈Aα≫Dα≈A. In general, α-methylated peptides were resistant to proteolysis, but this varied depending on the type of protease and specific amino acid substitution. In summary, increased helicity and amphilicity due to α-methylated amino acid substitutions in ApoA-I mimetic peptides resulted in improved cholesterol efflux capacity and resistance to proteolysis, indicating that this modification may be useful in the future design of therapeutic ApoA-I mimetic peptides.
Collapse
Affiliation(s)
- Rafique Islam
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jude Tunyi
- Laboratory of Computational Biology National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Galina Abdoulaeva
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard W Pastor
- Laboratory of Computational Biology National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Kang JM, Yoo WG, Lê HG, Thái TL, Hong SJ, Sohn WM, Na BK. Partial Characterization of Two Cathepsin D Family Aspartic Peptidases of Clonorchis sinensis. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:671-680. [PMID: 31914521 PMCID: PMC6960241 DOI: 10.3347/kjp.2019.57.6.671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
Cathepsin D (CatD, EC 3.4.23.5) is a member belonging to the subfamily of aspartic endopeptidases, which are classified into the MEROPS clan AA, family A1. Helminth parasites express a large set of different peptidases that play pivotal roles in parasite biology and pathophysiology. However, CatD is less well known than the other classes of peptidases in terms of biochemical properties and biological functions. In this study, we identified 2 novel CatDs (CsCatD1 and CsCatD2) of Clonorchis sinensis and partially characterized their properties. Both CsCatDs represent typical enzymes sharing amino acid residues and motifs that are tightly conserved in the CatD superfamily of proteins. Both CsCatDs showed similar patterns of expression in different developmental stages of C. sinensis, but CsCatD2 was also expressed in metacercariae. CsCatD2 was mainly expressed in the intestines and eggs of C. sinensis. Sera obtained from rats experimentally infected with C. sinensis reacted with recombinant CsCatD2 beginning 2 weeks after infection and the antibody titers were gradually increased by maturation of the parasite. Structural analysis of CsCatD2 revealed a bilobed enzyme structure consisting of 2 antiparallel β-sheet domains packed against each other forming a homodimeric structure. These results suggested a plausible biological role of CsCatD2 in the nutrition and reproduction of parasite and its potential utility as a serodiagnostic antigen in clonorchiasis.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won-Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | | |
Collapse
|
19
|
Payne M, Weerasinghe H, Tedja I, Andrianopoulos A. A unique aspartyl protease gene expansion in Talaromyces marneffei plays a role in growth inside host phagocytes. Virulence 2019; 10:277-291. [PMID: 30880596 PMCID: PMC6527018 DOI: 10.1080/21505594.2019.1593776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 11/05/2022] Open
Abstract
Aspartyl proteases are a widely represented class of proteolytic enzymes found in eukaryotes and retroviruses. They have been associated with pathogenicity in a range of disease-causing microorganisms. The dimorphic human-pathogenic fungus Talaromyces marneffei has a large expansion of these proteases identified through genomic analyses. Here we characterize the expansion of these genes (pop - paralogue of pep) and their role in T. marneffei using computational and molecular approaches. Many of the genes in this monophyletic family show copy number variation and positive selection despite the preservation of functional regions and possible redundancy. We show that the expression profile of these genes differs and some are expressed during intracellular growth in the host. Several of these proteins have distinctive localization as well as both additive and epistatic effects on the formation of yeast cells during macrophage infections. The data suggest that this is a recently evolved aspartyl protease gene family which affects intracellular growth and contributes to the pathogenicity of T. marneffei.
Collapse
Affiliation(s)
- Michael Payne
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| | - Irma Tedja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| |
Collapse
|
20
|
Gu CX, Zhang BL, Bai WW, Liu J, Zhou W, Ling ZQ, Lu Y, Xu L, Wan YJ. Characterization of the endothiapepsin-like protein in the entomopathogenic fungus Beauveria bassiana and its virulence effect on the silkworm, Bombyx mori. J Invertebr Pathol 2019; 169:107277. [PMID: 31715184 DOI: 10.1016/j.jip.2019.107277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
Endothiapepsin is an aspartic proteinase that was first isolated from the plant pathogenic fungus Endothia parasitica. In previous studies, we reported on three endothiapepsin-like proteins in the entomopathogenic fungus Beauveria bassiana; the genes were up-regulated in B. bassiana hyper-virulent strain GXsk1011 at early stage infection in the silkworm. However, whether these proteins play a role in pathogenicity or not remains unknown. In this study, we cloned one protein, BbepnL-1 gene (BBA-07766), that has 98% homology with B. bassiana strain Bb2860, and expressed it in the yeast Pichia pastoris to investigate its function. The endothiapepsin-like protein is a secreted proteinase of molecular weight approximately 40 kDa. It has an N-glycosylation site and a mutation in the C-terminal conserved domain- a Thr was mutated to Gly in B. bassiana GXsk1011 and is different than the endothiapepsin of Endothia parasitica. The recombinant endothiapepsin-like protein showed enzyme activity and degraded the protein components of the silkworm cuticle. To further investigate the activity of the endothiapepsin-like protein, we knocked out the gene BbepnL-1 and showed that the loss of BbepnL-1 reduced the virulence in the silkworm. These results demonstrated that the endothiapepsin-like protein of B. bassiana is a virulence factor.
Collapse
Affiliation(s)
- Cai-Xia Gu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Bao-Ling Zhang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Wen-Wen Bai
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jing Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Zi-Qi Ling
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yan Lu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong-Ji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
21
|
Schistosoma mansoni cathepsin D1: Biochemical and biophysical characterization of the recombinant enzyme expressed in HEK293T cells. Protein Expr Purif 2019; 167:105532. [PMID: 31711796 DOI: 10.1016/j.pep.2019.105532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Schistosomes express a variety of aspartyl proteases (APs) with distinct roles in the helminth pathophysiology, among which degradation of host haemoglobin is key, since it is the main amino acid source for these parasites. A cathepsin D-like AP from Schistosoma mansoni (SmCD1) has been used as a model enzyme for vaccine and drug development studies in schistosomes and yet a reliable expression system for readily producing the recombinant enzyme in high yield has not been reported. To contribute to further advancing the knowledge about this valuable antischistosomal target, we developed a transient expression system in HEK 293T mammalian cells and performed a biochemical and biophysical characterization of the recombinant enzyme (rSmCD1). It was possible to express a recombinant C-terminal truncated form of SmCD1 (rSmCD1ΔCT) and purify it with high yield (16 mg/L) from the culture supernatant. When analysed by Size-Exclusion Chromatography and multi-angle laser light scattering, rSmCD1ΔCT behaved as a dimer at neutral pH, which is unusual for cathepsins D, turning into a monomer after acidification of the medium. Through analytical ultrancentrifugation, the dimer was confirmed for free rSmCD1ΔCT in solution as well as stabilization of the monomer during interaction with pepstatin. The mammalian cell expression system used here was able to produce rSmCD1ΔCT with high yields allowing for the first time the characterization of important kinetic parameters as well as initial description of its biophysical properties.
Collapse
|
22
|
Lu S, Parizi LF, Torquato RJS, Vaz Junior IS, Tanaka AS. Novel pseudo-aspartic peptidase from the midgut of the tick Rhipicephalus microplus. Sci Rep 2019; 9:435. [PMID: 30679545 PMCID: PMC6345952 DOI: 10.1038/s41598-018-36849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
Abstract
The characterization of Rhipicephalus microplus tick physiology can support efforts to develop and improve the efficiency of control methods. A sequence containing a domain with similarity to one derived from the aspartic peptidase family was isolated from the midgut of engorged female R. microplus. The lack of the second catalytic aspartic acid residue suggest that it may be a pseudo-aspartic peptidase, and it was named RmPAP. In this work we confirm the lack of proteolytic activity of RmPAP and investigate it’s non-proteolytic interaction with bovine hemoglobin by Surface Plasmon Resonance and phage display. Moreover we carried out RNAi interference and artificial feeding of ticks with anti-RmPAP antibodies to assess it’s possible biological role, although no changes were observed in the biological parameters evaluated. Overall, we hypothesize that RmPAP may act as a carrier of hemoglobin/heme between the tick midgut and the ovaries.
Collapse
Affiliation(s)
- S Lu
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - L F Parizi
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil
| | - R J S Torquato
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - I S Vaz Junior
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,School of Veterinary, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil
| | - A S Tanaka
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil. .,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil.
| |
Collapse
|
23
|
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol 2019; 128:254-267. [PMID: 30664968 DOI: 10.1016/j.ijbiomac.2019.01.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Proteases are a group of large complex enzyme molecules that perform highly focused proteolysis functions. A vast quantity of the protease enzymes is predominantly sourced from microbial fermentation process, although proteases tend to natively present in plant, animals and humans. Proteases possess a pervasive importance in medical and pharmaceutical sector, because of its enriched specificity towards biomolecules. They are also actively encompassed in regulating certain physiological pathways. A distinct territory of human disorders is treated by substrate specific proteases. Enormous numbers of catalytic activities in habitual metabolism process of a living organism are protease dependent. Pilot scale researches and product development in industrial biotechnology sectors are wholly based on any one of the protease enzymes. The applications of the protease enzymes and its economic benefits of being an eco-friendly material are far-reaching. This review presents a brief overview on the classification and sources of various types of proteases. We describe the essential evidences of role of protease in different sectors. The proteases could be a potential relieves to harmful synthetic chemicals in distinctive industrial processes and thus gains global perception.
Collapse
Affiliation(s)
- Poorani Gurumallesh
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Kamalini Alagu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Baskar Ramakrishnan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India.
| | | |
Collapse
|
24
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
25
|
Li X, Zhang C, Gong T, Ni X, Li J, Zhan D, Liu M, Song L, Ding C, Xu J, Zhen B, Wang Y, Qin J. A time-resolved multi-omic atlas of the developing mouse stomach. Nat Commun 2018; 9:4910. [PMID: 30464175 PMCID: PMC6249217 DOI: 10.1038/s41467-018-07463-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian stomach is structurally highly diverse and its organ functionality critically depends on a normal embryonic development. Although there have been several studies on the morphological changes during stomach development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive, temporal proteome and transcriptome atlas of the mouse stomach at multiple developmental stages. Quantitative analysis of 12,108 gene products allows identifying three distinct phases based on changes in proteins and RNAs and the gain of stomach functions on a longitudinal time scale. The transcriptome indicates functionally important isoforms relevant to development and identifies several functionally unannotated novel splicing junction transcripts that we validate at the peptide level. Importantly, many proteins differentially expressed in stomach development are also significantly overexpressed in diffuse-type gastric cancer. Overall, our study provides a resource to understand stomach development and its connection to gastric cancer tumorigenesis.
Collapse
Affiliation(s)
- Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jianming Xu
- Department of Gastrointestinal Oncology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Gao B, He L, Wei D, Zhang L. Identification and magnetic immobilization of a pyrophilous aspartic protease from Antarctic psychrophilic fungus. J Food Biochem 2018. [DOI: 10.1111/jfbc.12691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Molecular Engineering East China Normal University Shanghai China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai China
| |
Collapse
|
27
|
Mancilla-Olea MI, Ortega-López J, Figueroa-Angulo EE, Avila-González L, Cárdenas-Guerra RE, Miranda-Ozuna JF, González-Robles A, Hernández-García MS, Sánchez-Ayala L, Arroyo R. Trichomonas vaginalis cathepsin D-like aspartic proteinase (Tv-CatD) is positively regulated by glucose and degrades human hemoglobin. Int J Biochem Cell Biol 2018; 97:1-15. [DOI: 10.1016/j.biocel.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 01/07/2023]
|
28
|
Cavallero S, Lombardo F, Su X, Salvemini M, Cantacessi C, D'Amelio S. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasit Vectors 2018; 11:31. [PMID: 29321072 PMCID: PMC5763927 DOI: 10.1186/s13071-017-2585-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/11/2017] [Indexed: 11/11/2022] Open
Abstract
Background Larval stages of the sibling species of parasitic nematodes Anisakis simplex (sensu stricto) (s.s.) (AS) and Anisakis pegreffii (AP) are responsible for a fish-borne zoonosis, known as anisakiasis, that humans aquire via the ingestion of raw or undercooked infected fish or fish-based products. These two species differ in geographical distribution, genetic background and peculiar traits involved in pathogenicity. However, thus far little is known of key molecules potentially involved in host-parasite interactions. Here, high-throughput RNA-Seq and bioinformatics analyses of sequence data were applied to the characterization of the whole sets of transcripts expressed by infective larvae of AS and AP, as well as of their pharyngeal tissues, in a bid to identify transcripts potentially involved in tissue invasion and host-pathogen interplay. Results Approximately 34,000,000 single-end reads were generated from cDNA libraries for each species. Transcripts identified in AS and AP encoded 19,403 and 10,424 putative peptides, respectively, and were classified based on homology searches, protein motifs, gene ontology and biological pathway mapping. Differential gene expression analysis yielded 226 and 339 transcripts upregulated in the pharyngeal regions of AS and AP, respectively, compared with their corresponding whole-larvae datasets. These included proteolytic enzymes, molecules encoding anesthetics, inhibitors of primary hemostasis and virulence factors, anticoagulants and immunomodulatory peptides. Conclusions This work provides the scientific community with a list of key transcripts expressed by AS and AP pharyngeal tissues and corresponding annotation information which represents a ready-to-use resource for future functional studies of biological pathways specifically involved in host-parasite interplay. Electronic supplementary material The online version of this article (10.1186/s13071-017-2585-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Xiaopei Su
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Lopes-Marques M, Ruivo R, Fonseca E, Teixeira A, Castro LFC. Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies. Mol Phylogenet Evol 2017; 116:78-86. [DOI: 10.1016/j.ympev.2017.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
31
|
Yu C, Cha Y, Wu F, Xu X, Qin L, Du M. Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2017; 70:553-559. [PMID: 28939529 DOI: 10.1016/j.fsi.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis.
Collapse
Affiliation(s)
- Cuiping Yu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Cha
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Fan Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
32
|
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer's Disease Pathology. Molecules 2017; 22:molecules22101723. [PMID: 29027981 PMCID: PMC6151801 DOI: 10.3390/molecules22101723] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations.
Collapse
|
33
|
Yan R. Stepping closer to treating Alzheimer's disease patients with BACE1 inhibitor drugs. Transl Neurodegener 2016; 5:13. [PMID: 27418961 PMCID: PMC4944430 DOI: 10.1186/s40035-016-0061-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives. While the etiology of AD remains an enigma, excessive accumulation of β-amyloid peptide (Aβ) is widely believed to induce pathological changes and cause dementia in brains of AD patients. BACE1 was discovered to initiate the cleavage of amyloid precursor protein (APP) at the β-secretase site. Only after this cleavage does γ-secretase further cleave the BACE1-cleaved C-terminal APP fragment to release Aβ. Hence, blocking BACE1 proteolytic activity will suppress Aβ generation. Due to the linkage of Aβ to the potential cause of AD, extensive discovery and development efforts have been directed towards potent BACE1 inhibitors for AD therapy. With the recent breakthrough in developing brain-penetrable BACE1 inhibitors, targeting amyloid deposition-mediated pathology for AD therapy has now become more practical. This review will summarize various strategies that have successfully led to the discovery of BACE1 drugs, such as MK8931, AZD-3293, JNJ-54861911, E2609 and CNP520. These drugs are currently in clinical trials and their updated states will be discussed. With the promise of reducing Aβ generation and deposition with no alarming safety concerns, the amyloid cascade hypothesis in AD therapy may finally become validated.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
34
|
Li Y, Kabbage M, Liu W, Dickman MB. Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants. THE PLANT CELL 2016; 28:233-47. [PMID: 26739014 PMCID: PMC4746679 DOI: 10.1105/tpc.15.00626] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/24/2015] [Accepted: 12/31/2015] [Indexed: 05/04/2023]
Abstract
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved group of cochaperones that modulate numerous cellular processes. Previously we found that Arabidopsis thaliana BAG6 is required for basal immunity against the fungal phytopathogen Botrytis cinerea. However, the mechanisms by which BAG6 controls immunity are obscure. Here, we address this important question by determining the molecular mechanisms responsible for BAG6-mediated basal resistance. We show that Arabidopsis BAG6 is cleaved in vivo in a caspase-1-like-dependent manner and via a combination of pull-downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate that BAG6 interacts with a C2 GRAM domain protein (BAGP1) and an aspartyl protease (APCB1), both of which are required for BAG6 processing. Furthermore, fluorescence and transmission electron microscopy established that BAG6 cleavage triggers autophagy in the host that coincides with disease resistance. Targeted inactivation of BAGP1 or APCB1 results in the blocking of BAG6 processing and loss of resistance. Mutation of the cleavage site blocks cleavage and inhibits autophagy in plants; disease resistance is also compromised. Taken together, these results identify a mechanism that couples an aspartyl protease with a molecular cochaperone to trigger autophagy and plant defense, providing a key link between fungal recognition and the induction of cell death and resistance.
Collapse
Affiliation(s)
- Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Wende Liu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
35
|
Wilson KA, Tan-Wilson A. Proteolysis of the peanut allergen Ara h 1 by an endogenous aspartic protease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:301-310. [PMID: 26322854 DOI: 10.1016/j.plaphy.2015.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
The 7S and 11S globulins of peanuts are subjected to proteolysis two days after seed imbibition, with Ara h 1 and the arachin acidic chains being among the first storage proteins to be mobilized. Proteolytic activity was greatest at pH 2.6-3 and is inhibited by pepstatin A, characteristic of an aspartic protease. This activity persists in seedling cotyledons up to at least 8 days after imbibition. In vitro proteolysis of Ara h 1 at pH 2.6 by extracts of cotyledons from seedlings harvested 24 h after seed imbibition generates newly appearing bands on SDS-PAGE. Partial sequences of Ara h 1 that were obtained through LC-MS/MS analysis of in-gel trypsin digests of those bands, combined with information on fragment size, suggest that proteolysis begins in the region that links the two cupin domains to produce two 33/34 kD fragments, each one encompassing an intact cupin domain. The later appearance of two 18 and 10/11 kD fragments can be explained by proteolysis within an exposed site in the cupin domains of each of the 33/34 kD fragments. The same or similar proteolytic activity was observed in developing seeds, but Ara h 1 remains intact through seed maturation. This is partly explained by the observation that acidification of the protein storage vacuoles, demonstrated by vacuolar accumulation of acridine orange that was dissipated by a membrane-permeable base, occurs only after germination. These findings suggest a method for use of the seed aspartic protease in reducing peanut allergy due to Ara h 1.
Collapse
Affiliation(s)
- Karl A Wilson
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | - Anna Tan-Wilson
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
36
|
Chater PI, Wilcox MD, Brownlee IA, Pearson JP. Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin. Carbohydr Polym 2015; 131:142-51. [PMID: 26256170 PMCID: PMC4539341 DOI: 10.1016/j.carbpol.2015.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/25/2015] [Indexed: 01/04/2023]
Abstract
Alginate inhibits proteolytic activity of pepsin but not trypsin. Level of pepsin inhibition correlates with alginate F[M]. An in vitro model gut system was used to model alginate inhibition of proteolysis. Proteolysis inhibited in gastric phase of digestion, but not small intestinal phase. pH dependent ionic interactions reduce substrate availability at pH 2.5.
Alginates are widely used in the food and medical industries, including as a Gastro-Oesophagul Reflux treatment. This work investigates the inhibitory effects of alginate on the reflux aggressors trypsin and pepsin and the role of alginate-substrate binding, pH and alginate structure on inhibition. Alginates were shown to reduce pepsin activity by up to 53.9% (±9.5SD) in vitro. Strong positive correlation between alginate mannuronate residue frequency and levels of pepsin inhibition was observed. Limited inhibition of trypsin was shown. Viscometric observations of pH dependent interactions between alginate and protein suggest a mechanism whereby pH dependent ionic interactions reduce substrate availability to enzyme at acidic pH. To understand how dietary protein digestion is affected by alginate, proteolytic digestion was investigated in an in vitro model of the upper digestive tract. Significant inhibition of proteolysis was shown in the gastric phase of digestion, but not the small intestinal phase.
Collapse
Affiliation(s)
- Peter Ian Chater
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Mathew D Wilcox
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Iain A Brownlee
- Nanyang Polytechnic, Food and Human Nutrition Department, Newcastle University Office, 180 Ang Mo Kio, Avenue 8, 569830 Singapore, Singapore
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
37
|
Castro LFC, Gonçalves O, Mazan S, Tay BH, Venkatesh B, Wilson JM. Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc Biol Sci 2013; 281:20132669. [PMID: 24307675 DOI: 10.1098/rspb.2013.2669] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The stomach, a hallmark of gnathostome evolution, represents a unique anatomical innovation characterized by the presence of acid- and pepsin-secreting glands. However, the occurrence of these glands in gnathostome species is not universal; in the nineteenth century the French zoologist Cuvier first noted that some teleosts lacked a stomach. Strikingly, Holocephali (chimaeras), dipnoids (lungfish) and monotremes (egg-laying mammals) also lack acid secretion and a gastric cellular phenotype. Here, we test the hypothesis that loss of the gastric phenotype is correlated with the loss of key gastric genes. We investigated species from all the main gnathostome lineages and show the specific contribution of gene loss to the widespread distribution of the agastric condition. We establish that the stomach loss correlates with the persistent and complete absence of the gastric function gene kit--H(+)/K(+)-ATPase (Atp4A and Atp4B) and pepsinogens (Pga, Pgc, Cym)--in the analysed species. We also find that in gastric species the pepsinogen gene complement varies significantly (e.g. two to four in teleosts and tens in some mammals) with multiple events of pseudogenization identified in various lineages. We propose that relaxation of purifying selection in pepsinogen genes and possibly proton pump genes in response to dietary changes led to the numerous independent events of stomach loss in gnathostome history. Significantly, the absence of the gastric genes predicts that reinvention of the stomach in agastric lineages would be highly improbable, in line with Dollo's principle.
Collapse
Affiliation(s)
- L Filipe C Castro
- CIMAR Associate Laboratory, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, , Porto, Portugal, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, , Porto, Portugal, Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, , Station Biologique, Roscoff, France, Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, , A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Yegin S, Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0137-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Yao X, Xiong W, Ye T, Wu Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2579-93. [PMID: 22268147 PMCID: PMC3346222 DOI: 10.1093/jxb/err433] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 05/18/2023]
Abstract
Drought is one of the most severe environmental stresses affecting plant growth and limiting crop production. Although many genes involved in adaptation to drought stress have been disclosed, the relevant molecular mechanisms are far from understood. This study describes an Arabidopsis gene, ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1), that may function in drought avoidance through abscisic acid (ABA) signalling in guard cells. Overexpression of the ASPG1 gene enhanced ABA sensitivity in guard cells and reduced water loss in ectopically overexpressing ASPG1 (ASPG1-OE) transgenic plants. In ASPG1-OE plants, some downstream targets in ABA and/or drought-signalling pathways were altered at various levels, suggesting the involvement of ASPG1 in ABA-dependent drought avoidance in Arabidopsis. By analysing the activities of several antioxidases including superoxide dismutase and catalase in ASPG1-OE plants, the existence was demonstrated of an effective detoxification system for drought avoidance in these plants. Analysis of ProASPG1-GUS lines showed a predominant guard cell expression pattern in various aerial tissues. Moreover, the protease activity of ASPG1 was characterized in vitro, and two aspartic acid sites, D180 and D379, were found to be key residues for ASPG1 aspartic protease activity in response to ABA. In summary, these findings suggest that functional ASPG1 may be involved in ABA-dependent responsiveness and that overexpression of the ASPG1 gene can confer drought avoidance in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Telugu BPVL, Green JA. Characterization of the peptidase activity of recombinant porcine pregnancy-associated glycoprotein-2. J Biochem 2008; 144:725-32. [PMID: 18835827 DOI: 10.1093/jb/mvn127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pregnancy-associated glycoproteins (PAGs) belong to the aspartic peptidase family. They are expressed exclusively in trophoblasts of even-toed ungulates such as swine, cattle, sheep, etc. In pigs, two distinct PAG transcripts (and some variants) have been described. One of the transcripts, porcine PAG-1 (poPAG-1) may not be capable of acting as a peptidase. The second transcript, poPAG-2, possesses a conserved catalytic centre and has been predicted, but not shown, to have proteolytic activity. The thrust of this work was to test such a possibility. PoPAG-2 was expressed as a recombinant protein with an amino-terminal 'FLAG-tag' in a Baculoviral expression system. The expressed proteins were affinity purified by using an anti-FLAG antibody. The purified preparations were then analysed for proteolytic activity against a fluorescent substrate. Porcine PAG-2 had optimal proteolytic activity around pH 3.5. Against this substrate, it had a k(cat)/K(m) of 1.2 microM(-1) s(-1) and was inhibited by the aspartic peptidase inhibitor, pepstatin A, with a K(i) of 12.5 nM. Since the proteolytic activity of PAGs in the pig has now been established, the search for putative substrates to gain insight into the physiological role of PAGs will likely be the focus of future investigations.
Collapse
|
41
|
Brandt GA, Parks TE, Killian G, Ealy AD, Green JA. A cloning and expression analysis of pregnancy-associated glycoproteins expressed in trophoblasts of the white-tail deer placenta. Mol Reprod Dev 2007; 74:1355-62. [PMID: 17393426 DOI: 10.1002/mrd.20669] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pregnancy-associated glycoproteins (PAGs) are placental proteins that have been cloned from swine, sheep, goats, and cattle, but never from animals within the Cervidae family. The goal of this work was to characterize PAGs in white-tailed deer. Placenta and uterine tissues were collected from pregnant does at days 85 and 90 of pregnancy. RNA from cotyledons was used to amplify deer PAGs by RT-PCR. Ten distinct cDNAs were cloned and sequenced. Some normally conserved amino acids comprising the catalytic site were found to be altered in deer PAGs 4, 5, and 8; another PAG, (PAG-9) was a splice variant that lacked exon 7. In each case, these mutations would likely preclude proteolytic activity for these proteins. A phylogenetic analysis revealed that most of the deer PAGs fell within the ancient PAG grouping. The remainder fell within the more modern (BNC-specific) PAG group. Western blotting was performed with anti-PAG antibodies and this analysis revealed that deer PAGs comprise a heterogeneous group based on different antigenicities and electrophoretic mobilities. Immunohistochemistry and in situ hybridization revealed some unique localization patterns of PAGs in the deer placentome compared to those in other ruminants. Most notably, deer PAGs 4 and 5, which according to the phylogeny, are "ancient PAGs," were expected to be present in all trophoblasts; instead, they were localized to the BNC. Although many of the PAGs identified here are very similar to those in Bovidae, some are clearly distinct in their expression pattern and probably possess functional roles unique to cervid reproduction.
Collapse
Affiliation(s)
- Gretchen A Brandt
- Department of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211-5300, USA
| | | | | | | | | |
Collapse
|
42
|
Borelli C, Ruge E, Schaller M, Monod M, Korting HC, Huber R, Maskos K. The crystal structure of the secreted aspartic proteinase 3 from Candida albicans and its complex with pepstatin A. Proteins 2007; 68:738-48. [PMID: 17510964 DOI: 10.1002/prot.21425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The family of secreted aspartic proteinases (Sap) encoded by 10 SAP genes is an important virulence factor during Candida albicans (C. albicans) infections. Antagonists to Saps could be envisioned to help prevent or treat candidosis in immunocompromised patients. The knowledge of several Sap structures is crucial for inhibitor design; only the structure of Sap2 is known. We report the 1.9 and 2.2 A resolution X-ray crystal structures of Sap3 in a stable complex with pepstatin A and in the absence of an inhibitor, shedding further light on the enzyme inhibitor binding. Inhibitor binding causes active site closure by the movement of a flap segment. Comparison of the structures of Sap3 and Sap2 identifies elements responsible for the specificity of each isoenzyme.
Collapse
Affiliation(s)
- Claudia Borelli
- Department of Dermatology and Allergy, Ludwig Maximilian University of Munich, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
44
|
Kamitori S, Ohtaki A, Ino H, Takeuchi M. Crystal structures of Aspergillus oryzae aspartic proteinase and its complex with an inhibitor pepstatin at 1.9A resolution. J Mol Biol 2003; 326:1503-11. [PMID: 12595261 DOI: 10.1016/s0022-2836(03)00078-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.
Collapse
Affiliation(s)
- Shigehiro Kamitori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | |
Collapse
|
45
|
Chen X, Rosenfeld CS, Roberts RM, Green JA. An aspartic proteinase expressed in the yolk sac and neonatal stomach of the mouse. Biol Reprod 2001; 65:1092-101. [PMID: 11566730 DOI: 10.1095/biolreprod65.4.1092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A murine aspartic proteinase, described herein, is intermediate in amino acid sequence identity between the placentally produced pregnancy-associated glycoproteins (PAGs) and gastric pepsins. While PAGs are secreted products of placental trophoblast tissue of ungulates and most are not believed to function proteolytically, pepsins are digestive enzymes. The cDNA for this aspartic proteinase was amplified by reverse transcription-polymerase chain reaction from RNA extracted from murine placentas and neonatal stomachs. The open reading frame encoded a 387-amino acid polypeptide with a 15-residue signal sequence. The enzyme most resembled pepsinogen F (a protein identified in the stomachs of neonatal rabbits and rats) and PAG-like proteins cloned from equine and feline placentae. In the stomach, both its mRNA and protein were expressed in gastric chief cells of preweaned neonates. Within the placenta, its mRNA was present in both the parietal and visceral yolk sacs. However, the protein was most prevalent in the visceral yolk sac, with little detectable in the parietal yolk sac. The recombinant protein was expressed in Escherichia coli. This protein was capable of self-activation and exhibited proteolytic activity toward casein. The presence of this enzyme in two organs involved in the selective transcellular transport of proteins suggests that it has specialized digestive functions.
Collapse
Affiliation(s)
- X Chen
- Department of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
46
|
Anlauf M, Weihe E, Hartschuh W, Hamscher G, Feurle GE. Localization of xenin-immunoreactive cells in the duodenal mucosa of humans and various mammals. J Histochem Cytochem 2000; 48:1617-26. [PMID: 11101630 DOI: 10.1177/002215540004801205] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Xenin is a 25-amino-acid peptide extractable from mammalian tissue. This peptide is biologically active. It stimulates exocrine pancreatic secretion and intestinal motility and inhibits gastric secretion of acid and food intake. Xenin circulates in the human plasma after meals. In this study, the cellular origin of xenin in the gastro-entero-pancreatic system of humans, Rhesus monkeys, and dogs was investigated by immunohistochemistry and immunoelectron microscopy. Sequence-specific antibodies against xenin detected specific endocrine cells in the duodenal and jejunal mucosa of all three species. These xenin-immunoreactive cells were distinct from enterochromaffin, somatostatin, motilin, cholecystokinin, neurotensin, and secretin cells, and comprised 8.8% of the chromogranin A-positive cells in the dog duodenum and 4.6% of the chromogranin A-positive cells in human duodenum. In all three species, co-localization of xenin was found with a subpopulation of gastric inhibitory polypeptide (GIP)-immunoreactive cells. Immunoelectron microscopy in the canine duodenal mucosa demonstrated accumulation of gold particles in round, homogeneous, and osmiophilic secretory granules with a closely adhering membrane of 187 +/- 19 nm diameter (mean +/- SEM). This cell type was found to be identical to the previously described canine GIP cell. Immunocytochemical expression of the peptide xenin in a subpopulation of chromogranin A-positive cells as well as the localization of xenin immunoreactivity in ultrastructurally characterized secretory granules permitted the identification of a novel endocrine cell type as the cellular source of circulating xenin.
Collapse
Affiliation(s)
- M Anlauf
- Institut für Anatomie und Zellbiologie, Philipps Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Steinfeld S, Maho A, Chaboteaux C, Daelemans P, Pochet R, Appelboom T, Kiss R. Prolactin up-regulates cathepsin B and D expression in minor salivary glands of patients with Sjögren's syndrome. J Transl Med 2000; 80:1711-20. [PMID: 11092531 DOI: 10.1038/labinvest.3780181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Various proteases are expressed in the minor salivary glands (MSG) of patients with Sjögren's syndrome (SS), and as we have already shown, prolactin is neosynthesized in the acinar cells of patients with SS. The present study aims to characterize the influence of PRL on the expression of cathepsin B and D in the MSG of patients with SS. Cathepsin B and D expression was investigated immunohistochemically in MSG of 30 patients with SS and 15 healthy volunteers. The presence of cathepsin B and D mRNAs was checked in three SS patients and three control subjects by means of reverse transcription-polymerase chain reaction (RT-PCR). The specificity of the anti-cathepsin B and D antibodies used for the immunohistochemistry was checked by means of western blotting analysis. The influence of prolactin on the immunohistochemical expression of cathepsin B and D was quantitatively assayed by computer-assisted microscopy at three different doses (5, 50, and 500 ng/ml) on eight MSGs (four control subjects and four patients with SS) maintained ex vivo under organotypic cultures. This influence was also investigated at the mRNA level. Whereas cathepsin B immunopositivity was absent from glandular epithelial cells of healthy subjects and only slightly present in SS patients, cathepsin D immunoreactivity was considerably greater (p < 0.0001) in both the acini and the ducts of patients with SS as compared with control subjects. Cathepsin B, but not D, was also expressed in about 20% of infiltrating mononuclear cells of SS patients. Treatment of both healthy and SS minor salivary glands with PRL significantly (p < 0.05 top < 0.0001) enhanced cathepsin B and D expression in acinar and ductal cells at both protein and mRNA levels. PRL produced locally in MSGs of SS patients, but not those of healthy subjects, could play a role in the pathogenesis of Sjogren's syndrome, if only through the activation of proteolytic activity on the part of cathepsins B and D.
Collapse
Affiliation(s)
- S Steinfeld
- Divisions of Rheumatology, Erasme University Hospital, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Tcherepanova I, Bhattacharyya L, Rubin CS, Freedman JH. Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1. J Biol Chem 2000; 275:26359-69. [PMID: 10854422 DOI: 10.1074/jbc.m000956200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Caenorhabditis elegans gene (asp-1) and cDNA that encode a homologue of cathepsin D aspartic protease were cloned and characterized. The asp-1 mRNA is transcribed from a single exon, and it begins with the SL1 trans-splice leader sequence. The protein (ASP-1) is expressed as a 396-amino acid, 42.7-kDa pre-pro-peptide that is post-translationally processed into a approximately 40-kDa lysosomal protein. ASP-1 shares approximately 60% sequence identity with the aspartic protease precursor from the nematode Strongyloides stercoralis. The amino acid sequences adjacent to the two active site aspartic acid residues in ASP-1 are 100% identical to those in other eukaryotic aspartic proteases. In addition, ASP-1 contains conserved, potential disulfide bond-forming cysteine residues and N-glycosylation sites. The asp-1 gene is exclusively transcribed in the intestinal cells, with the highest levels of expression observed at late embryonic and early larval stages of development. asp-1 transcription is not observed in adult nematodes or mature larvae. Furthermore, transcription predominantly occurs in eight anterior cells of the intestine (int6-int8). Analyses of ASP-1 nucleotide and amino acid sequences revealed the presence of five additional C. elegans aspartic proteases.
Collapse
Affiliation(s)
- I Tcherepanova
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
49
|
Basque JR, Ménard D. Establishment of culture systems of human gastric epithelium for the study of pepsinogen and gastric lipase synthesis and secretion. Microsc Res Tech 2000; 48:293-302. [PMID: 10700046 DOI: 10.1002/(sici)1097-0029(20000301)48:5<293::aid-jemt6>3.0.co;2-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A main purpose of gastric secretion pertains to the digestion of dietary proteins and involves the release of pepsinogens by the fundic and antral mucosa. Over the last decade, data on human gastric physiology has expanded to equally include a significant role in fat digestion. Characteristics of human gastric lipase (HGL) such as optimum acid pH, resistance to proteolysis and non requirement of bile salts or cofactors, are advantageous in gastric lipolysis. Furthermore, the importance of HGL increases in the context of perinatal physiology and pathological situations where secretion of HGL could compensate, to some extent the depressed pancreatic activities. It is therefore important to understand the regulatory mechanisms involved in the synthesis and secretion of human gastric digestive enzymes. The establishment of an organ culture technique as well as a novel primary culture system of human gastric epithelium permitted us to demonstrate that Pg5 and HGL are colocalized in human chief cells and both digestive enzymes are efficiently synthesized and secreted in explants and primary cultures. Pepsin activity rises at the cellular level while its secretion remains constant. In contrast, cellular lipase activity drastically diminishes while being preferentially secreted. This nonparallelism supports the concept that Pg5 and HGL are differently regulated in culture. Furthermore, EGF downregulates HGL expression at the mRNA level via the p42/44(MAPK) pathway without affecting Pg5. Future studies should be designed to fully understand the cellular and molecular mechanisms involved in regulating HGL activity in normal and pathological conditions.
Collapse
Affiliation(s)
- J R Basque
- MRC Research Group on Functional Development and Physiopathology of the Gastrointestinal Tract, Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke (Québec) Canada
| | | |
Collapse
|
50
|
Acquati F, Accarino M, Nucci C, Fumagalli P, Jovine L, Ottolenghi S, Taramelli R. The gene encoding DRAP (BACE2), a glycosylated transmembrane protein of the aspartic protease family, maps to the down critical region. FEBS Lett 2000; 468:59-64. [PMID: 10683441 DOI: 10.1016/s0014-5793(00)01192-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We applied cDNA selection methods to a genomic clone (YAC 761B5) from chromosome 21 located in the so-called 'Down critical region' in 21q22.3. Starting from human fetal heart and brain mRNAs we obtained and sequenced several cDNA clones. One of these clones (Down region aspartic protease (DRAP), named also BACE2 according to the gene nomenclature) revealed a striking nucleotide and amino acid sequence identity with several motifs present in members of the aspartic protease family. In particular the amino acid sequences comprising the two catalytic sites found in all mammalian aspartic proteases are perfectly conserved. Interestingly, the predicted protein shows a typical membrane spanning region; this is at variance with most other known aspartic proteases, which are soluble molecules. We present preliminary evidence, on the basis of in vitro translation studies and cell transfection, that this gene encodes a glycosylated protein which localizes mainly intracellularly but to some extent also to the plasma membrane. Furthermore DRAP/BACE2 shares a high homology with a newly described beta-secretase enzyme (BACE-1) which is a transmembrane aspartic protease. The implications of this finding for Down syndrome are discussed.
Collapse
Affiliation(s)
- F Acquati
- Dipartimento Biologia Strutturale e Funzionale, Universita' Insubria, via Dunant 3, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|