1
|
Zhou J, Li N, Li X, Ye J, Wang M, Sun G. Review on recent advancements in understanding acetylsalicylic acid-induced gastrointestinal injury: mechanisms, medication, and dosage refinement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03521-w. [PMID: 39545984 DOI: 10.1007/s00210-024-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Acetylsalicylic acid (ASA) is a clinical drug with multiple effects, including prevention of cardiovascular adverse events and anti-cancer effects. However, gastrointestinal side effects, such as gastrointestinal ulcers and bleeding, limit the use of ASA and reduce patient compliance. Various studies have investigated the mechanisms of ASA-induced gastrointestinal injury, and many medicines have been reported to be effective in preventing and treating the adverse gastrointestinal effects of ASA. New formulations of ASA have demonstrated milder gastrointestinal injury than ASA alone. In this article, we summarized the mechanisms of ASA-induced gastrointestinal injury, drugs that resist gastrointestinal side effects of ASA, and progress in research on formulation improvement of ASA to help resolve the clinical dilemma of ASA usage.
Collapse
Affiliation(s)
- Jiahui Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinzhong Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Ichihara E, Hasegawa K, Kudo K, Tanimoto Y, Nouso K, Oda N, Mitsumune S, Yamada H, Takata I, Hagiya H, Mitsuhashi T, Taniguchi A, Toyooka S, Tsukahara K, Aokage T, Tsukahara H, Kiura K, Maeda Y. A randomized controlled trial of teprenone in terms of preventing worsening of COVID-19 infection. PLoS One 2023; 18:e0287501. [PMID: 37883347 PMCID: PMC10602324 DOI: 10.1371/journal.pone.0287501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Some COVID-19 patients develop life-threatening disease accompanied by severe pneumonitis. Teprenone induces expression of heat-shock proteins (HSPs) that protect against interstitial pneumonia in preclinical models. We explored whether teprenone prevented worsening of COVID-19 infections. METHODS This open-label, randomized, pilot phase 2 clinical trial was conducted at five institutions in Japan. We randomized patients hospitalized for COVID-19 with fever to teprenone or no-teprenone groups in a 1:1 ratio. We stratified patients by sex, age < and ≥ 70 years and the existence (or not) of complications (hypertension, diabetes, ischemic heart disease, chronic pulmonary disease and active cancer). No limitation was imposed on other COVID-19 treatments. The primary endpoint was the intubation rate. RESULTS One hundred patients were included, 51 in the teprenone and 49 in the no- teprenone groups. The intubation rate did not differ significantly between the two groups: 9.8% (5/51) vs. 2.0% (1/49) (sub-hazard ratio [SHR] 4.99, 95% confidence interval [CI]: 0.59-42.1; p = 0.140). The rates of intra-hospital mortality and intensive care unit (ICU) admission did not differ significantly between the two groups: intra-hospital mortality 3.9% (2/51) vs. 4.1% (2/49) (hazard ratio [HR] 0.78, 95%CI: 0.11-5.62; p = 0.809); ICU admission 11.8% (6/51) vs. 6.1% (3/49) (SHR 1.99, 95%CI: 0.51-7.80; p = 0.325). CONCLUSION Teprenone afforded no clinical benefit. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs061200002 (registered on 20/May/2020).
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichiro Kudo
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Sho Mitsumune
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Haruto Yamada
- Department of Infectious Disease, Okayama City Hospital, Okayama, Japan
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Jin T, You Y, Fan W, Wang J, Chen Y, Li S, Hong S, Wang Y, Cao R, Yodoi J, Tian H. Geranylgeranylacetone Ameliorates Skin Inflammation by Regulating and Inducing Thioredoxin via the Thioredoxin Redox System. Antioxidants (Basel) 2023; 12:1701. [PMID: 37760004 PMCID: PMC10525896 DOI: 10.3390/antiox12091701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Geranylgeranylacetone (GGA) exerts cytoprotective activity against various toxic stressors via the thioredoxin (TRX) redox system; however, its effect on skin inflammation and molecular mechanism on inducing the TRX of GGA is still unknown. We investigated the effects of GGA in a murine irritant contact dermatitis (ICD) model induced by croton oil. Both a topical application and oral administration of GGA induced TRX production and Nrf2 activation. GGA ameliorated ear swelling, neutrophil infiltration, and inhibited the expression of TNF-α, IL-1β, GM-CSF, and 8-OHdG. GGA's cytoprotective effect was stronger orally than topically in mice. In vitro studies also showed that GGA suppressed the expression of NLRP3, TNF-α, IL-1β, and GM-CSF and scavenged ROS in PAM212 cells after phorbol myristate acetate stimulation. Moreover, GGA induced endogenous TRX production and Nrf2 nuclear translocation in PAM212 cells (dependent on the presence of ROS) and activated the PI3K-Akt signaling pathway. GGA significantly downregulated thioredoxin-interacting protein (TXNIP) levels in PAM212 cells treated with or without Nrf2 siRNA. After knocking down Nrf2 in PAM212 cells, the effect of GGA on TRX induction was significantly inhibited. This suggests that GGA suppress ICD by inducing endogenous TRX, which may be regulated by PI3K/Akt/Nrf2 mediation of the TRX redox system.
Collapse
Affiliation(s)
- Tiancheng Jin
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yitong You
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Wenjie Fan
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junyang Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yuhao Chen
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Siyuan Hong
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yaxuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Ruijie Cao
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
- Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing 312000, China
| |
Collapse
|
4
|
Hrubša M, Nurjamal K, Carazo A, Nayek N, Karlíčková J, Applová L, Karmakar I, Parvin S, Fadraersada J, Macáková K, Mladěnka P, Brahmachari G. Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs. Med Chem 2021; 18:536-543. [PMID: 34702153 DOI: 10.2174/1573406417666211026150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug acetylsalicylic acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase-1. CONCLUSION The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3-carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.
Collapse
Affiliation(s)
- Marcel Hrubša
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Khondekar Nurjamal
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Nayana Nayek
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Jana Karlíčková
- The Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Lenka Applová
- The Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Indrajit Karmakar
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Shamima Parvin
- The Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Jaka Fadraersada
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Kateřina Macáková
- The Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Goutam Brahmachari
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| |
Collapse
|
5
|
Zhao C, Wang J, Xiao Q. Efficacy of Teprenone for Prevention of NSAID-Induced Gastrointestinal Injury: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:647494. [PMID: 33898483 PMCID: PMC8058206 DOI: 10.3389/fmed.2021.647494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The study aimed to conduct a systematic review and meta-analysis comparing the efficacy of teprenone with control or other drugs for reducing the incidence of gastrointestinal (GI) adverse events in patients receiving long-term non-steroidal anti-inflammatory drugs (NSAIDs). Methods: Databases of PubMed, Embase, BioMed Central, CENTRAL, and Google Scholar were searched up to November 10th, 2020 for randomized controlled trials (RCTs) comparing teprenone with control or other drugs. A random-effects model was used for the meta-analysis. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used for assessing the certainty of evidence. Results: Seven RCTs were included. Six compared teprenone with control and one with famotidine. Meta-analysis indicated a statistically significant reduced risk of GI ulcers in patients receiving teprenone as compared to control after 12 weeks/3months (RR 0.37 95% CI 0.17, 0.18 I 2 = 0% p = 0.01). Pooled data of three open-label studies indicated statistically significant reduction of GI symptoms in patients on teprenone as compared to control at 6 months and 12 months, but not at 3 months. Comparing teprenone with control, our analysis indicated non-significant but a tendency of better reduction in Modified Lanza Score (MLS) with teprenone. The RCT comparing teprenone to famotidine demonstrated better reduction of MLS with famotidine. The certainty of evidence-based on GRADE was deemed to be low. Conclusion: Low-quality evidence indicates a beneficial role of teprenone in preventing GI injuries in patients receiving long-term NSAIDs. Further high-quality RCTs comparing teprenone with placebo as well as other gastroprotective drugs are needed to strengthen current evidence.
Collapse
Affiliation(s)
- Chongxiang Zhao
- Department of Gastroenterology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, China
| | - Jingwu Wang
- Department of Gastroenterology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, China
| | - Qiang Xiao
- Department of Gastroenterology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, China
| |
Collapse
|
6
|
Gao X, Jia Y, Xu H, Li Y, Zhu Q, Wei C, Hou J, Li D, Wang W, Li Z, Guo R, Jia J, Wu Y, Wei Z, Qi X, Li Y. Association between serum pepsinogen and atherosclerotic cardiovascular disease. Nutr Metab Cardiovasc Dis 2021; 31:169-177. [PMID: 33127250 DOI: 10.1016/j.numecd.2020.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Serum pepsinogens (PGs) are biomarkers for gastric mucosal damage and have been reported to be associated with atherosclerosis. Its correlation with atherosclerotic cardiovascular disease (ASCVD) is still unknown. This study aimed to explore the association between serum PGs and ASCVD for providing physicians with an integrative picture to make rational plans in the diagnosis and treatment of ASCVD. METHODS AND RESULTS The concentrations of serum PGs and their distributions between ASCVD and non-ASCVD were compared by non-parametric test, Chi-squared test and Fisher exact test. The correlation between variables was analyzed by Spearman's correlation test. The association of serum PGs with ASCVD was analyzed by the binary logistic regression and two-piecewise linear regression. A total of 8355 recruited cases were eligible for the study. The concentrations of serum PGs were significantly different between the ASCVD and non-ASCVD groups (P = 0.025, P < 0.001). The lower PGI and PGR levels were significantly correlated with a high risk of ASCVD presence after adjustment for 26 potential covariates. Moreover, there was a linear relationship between the high level of PGII and the high risk of ASCVD [adjusted OR = 1.16 (1.00, 1.37), P = 0.07]. A nonlinear relationship of PGI/PGR and ASCVD (P = 0.08/<0.001) was also revealed. The risk of ASCVD increased with a range of log PGI ≥2.13 (PGI≥131 ng/mL) [adjusted OR = 4.67 (1.00, 23.17)], and decreased with a range of log PGR ≥0.22 (1.65) [adjusted OR = 0.59 (0.48, 0.74), P < 0.001]. CONCLUSIONS Serum PGI and PGR are nonlinearly correlated with ASCVD, while PGII is linearly correlated with ASCVD. Among all PGs, PGR may serve as a reliable biomarker for ASCVD.
Collapse
Affiliation(s)
- Xiaoling Gao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Yanjuan Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Xu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Qing Zhu
- The Medical Department, Sichuan University West China Hospital, Chengdu, 610000, China
| | - Chaojun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jinxia Hou
- The Clinical Laboratory Centre, Gansu Provincial Hospital, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Dehong Li
- The Clinical Laboratory Centre, Gansu Provincial Hospital, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Wanxia Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zhenhao Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Rui Guo
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jing Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zhenhong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaoming Qi
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yuanting Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China; The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| |
Collapse
|
7
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|