1
|
Songjang W, Nensat C, Jitpewngarm W, Jiraviriyakul A. Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study. Int J Mol Sci 2024; 25:13232. [PMID: 39768997 PMCID: PMC11675498 DOI: 10.3390/ijms252413232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Metastatic cancer is still one of the leading causes of death worldwide despite significant advancements in diagnosis and treatment. Biomarkers are one of the most promising diagnostic tools that are used alongside traditional diagnostic tools in cancer patients. DAMPs are intracellular molecules released in response to cellular stress, tissue injury, and cell death. There have been shown to be associated with worsening prognosis among such patients, and some DAMPs could potentially be used as predictive biomarkers of metastatic status. The goal of this study is to investigate DAMP expression and the probability that certain DAMPs could be predictive biomarkers of the metastatic stage in various cancer types. Forty cancer patients at Naresuan University Hospital, Thailand, were enrolled. Then, an investigation of HSP90, HMGB1, S100A9, and ATP expression and cytokine/chemokine profiling in serum was performed using an immunological-based assay. We assessed the predictive biomarker candidates and the association between DAMP expression and cytokines/chemokines using an ROC curve analysis and a correlation regression analysis. The results showed that HSP90 has strong potential as a metastatic predictive biomarker, with a cutoff value of 25.46 ng/mL (AUC 0.8207, sensitivity 82.61%, specificity 75.00%, 95% CI 0.6860-0.9553). This was followed by HMGB1 and S100A9, which exhibited sensitivity of 82.61 and 65.22%, and specificity of 68.75 and 56.25%, respectively. Interestingly, the candidate DAMPs negatively correlate with various serum cytokines, for example, HMGB1 vs. IL-15 (slope 88.05, R 0.3297, p-value 0.005), HMGB1 vs. IFN-γ (slope 2.235, R 0.3052, p-value 0.0013) and HSP90 vs. IFN-γ (slope 0.0614, R 0.2187, p-value 0.008), suggesting that they are highly elevated in advanced metastatic tumors, which is possibly associated with the immunomodulation effect. We postulated that HSP90, HMGB1, and S100A9 have the potential to be predictive biomarkers for supporting tumor metastasis categorization using histopathology.
Collapse
Affiliation(s)
- Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.); (C.N.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Chatchai Nensat
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.); (C.N.)
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Wittawat Jitpewngarm
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.); (C.N.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Luo Y, Xue H, Chen H, Gao Y, Ji G, Wu T. Metabolomics advances in chronic atrophic gastritis diagnosis and the integration of traditional Chinese medicine. Saudi Pharm J 2024; 32:102213. [DOI: 10.1016/j.jsps.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
|
3
|
Fang S, Du S, Luo X, Qing X, Wang L, Ban Y, Song G, Yang Y, Wei W. The role of the S100A8/S100A9 in gastric tumor progression. Sci Rep 2024; 14:23574. [PMID: 39384957 PMCID: PMC11464527 DOI: 10.1038/s41598-024-74695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Gastric premalignant lesions can develop into cancer through multiple steps and inflammation plays a critical role. The aim of this study is to uncover the characteristics of macrophages and their gene expression in premalignant gastric lesions to identify novel biomarkers and potential targets for treatment. We used the computational algorithm CIBERSORT to estimate immune cell subsets present in gastric tissue. We applied WGCNA to identify inflammation-related modules and hub genes. Single-cell analysis was used to identify macrophage sub-clusters specific to pathology. In addition, the in-vitro experiment was performed to verify the mechanism of the key inflammatory factors in the growth of gastric cancer. WGCNA identified a module that was positively correlated with pathological changes and highly related to inflammation scores. Single-cell analysis revealed a macrophage subset, and we observed that S100A8 and S100A9 + macrophages made up a significantly higher proportion in early gastric cancer (EGC) tissues. Our functional enrichment analysis suggested that these macrophages may play a role in gastric tumorigenesis through the activation of the NFκB signaling pathway. In vitro experiments verified that S100A9 can promote the proliferation and migration of AGS cells through the TLR4-NFκB signaling pathway, and the S100A8/S100A9 inhibitor Paquinimod can inhibit their proliferation and migration. Our findings suggest that S100A8 and S100A9 + macrophages may activate the TLR4-NFκB signaling pathway to promote cell proliferation and migration leading to gastric tumor progression. Macrophages with high expression of S100A8/S100A9 are critical in the progression of gastric inflammation to cancer. Cytokine S100A9 can activate the TLR4-NFκB signaling pathway and promote the proliferation and migration of gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Shuangshuang Fang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijing Du
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Luo
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangli Qing
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanran Ban
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, 2500 Metrohealth Dr, Cleveland, OH, 44109, USA.
| | - Yang Yang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| | - Wei Wei
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| |
Collapse
|
4
|
Gao X, Yang C, Li H, Shao L, Wang M, Su R. EMT-related gene risk model establishment for prognosis and drug treatment efficiency prediction in hepatocellular carcinoma. Sci Rep 2023; 13:20380. [PMID: 37990105 PMCID: PMC10663558 DOI: 10.1038/s41598-023-47886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
This study was designed to evaluate the prognosis and pharmacological therapy sensitivity of epithelial mesenchymal transition-related genes (EMTRGs) that obtained from the EMTome database in hepatocellular carcinoma (HCC) using bioinformatical method. The expression status of EMTRGs were also investigated using the clinical information of HCC patients supported by TCGA database and the ICGC database to establish the TCGA cohort as the training set and the ICGC cohort as the validation set. Analyze the EMTRGs between HCC tissue and liver tissue in the TCGA cohort in the order of univariate COX regression, LASSO regression, and multivariate COX regression, and construct a risk model for EMTRGs. In addition, enrichment pathways, gene mutation status, immune infiltration, and response to drugs were also analyzed in the high-risk and low-risk groups of the TCGA cohort, and the protein expression status of EMTRGs was verified. The results showed a total of 286 differentially expressed EMTRGs in the TCGA cohort, and EZH2, S100A9, TNFRSF11B, SPINK5, and CCL21 were used for modeling. The TCGA cohort was found to have a worse outcome in the high-risk group of HCC patients, and the ICGC cohort confirmed this finding. In addition, EMTRGs risk score was shown to be an independent prognostic factor in both cohorts by univariate and multivariate COX regression. The results of GSEA analysis showed that most of the enriched pathways in the high-risk group were associated with tumor, and the pathways enriched in the low-risk group were mainly associated with metabolism. Patients in various risk groups had varying immunological conditions, and the high-risk group might benefit more from targeted treatments. To sum up, the EMTRGs risk model was developed to forecast the prognosis for HCC patients, and the model might be useful in assisting in the choice of treatment drugs for HCC patients.
Collapse
Affiliation(s)
- Xiaqing Gao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chunting Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Hailong Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Lihua Shao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Rong Su
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
5
|
Shi H, Pan Y, Xiang G, Wang M, Huang Y, He L, Wang J, Fang Q, Li L, Liu Z. A novel NET-related gene signature for predicting DLBCL prognosis. J Transl Med 2023; 21:630. [PMID: 37716978 PMCID: PMC10504796 DOI: 10.1186/s12967-023-04494-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy. Neutrophil extracellular traps (NETs) are pathogen-trapping structures in the tumor microenvironment that affect DLBCL progression. However, the predictive function of NET-related genes (NRGs) in DLBCL has received little attention. This study aimed to investigate the interaction between NRGs and the prognosis of DLBCL as well as their possible association with the immunological microenvironment. METHODS The gene expression and clinical data of patients with DLBCL were downloaded from the Gene Expression Omnibus database. We identified 148 NRGs through the manual collection of literature. GSE10846 (n = 400, GPL570) was used as the training dataset and divided into training and testing sets in a 7:3 ratio. Univariate Cox regression analysis was used to identify overall survival (OS)-related NETs, and the least absolute shrinkage and selection operator was used to evaluate the predictive efficacy of the NRGs. Kaplan-Meier plots were used to visualize survival functions. Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of NRG-based features. A nomogram containing the clinical information and prognostic scores of the patients was constructed using multivariate logistic regression and Cox proportional risk regression models. RESULTS We identified 36 NRGs that significantly affected patient overall survival (OS). Eight NRGs (PARVB, LYZ, PPARGC1A, HIF1A, SPP1, CDH1, S100A9, and CXCL2) were found to have excellent predictive potential for patient survival. For the 1-, 3-, and 5-year survival rates, the obtained areas under the receiver operating characteristic curve values were 0.8, 0.82, and 0.79, respectively. In the training set, patients in the high NRG risk group presented a poorer prognosis (p < 0.0001), which was validated using two external datasets (GSE11318 and GSE34171). The calibration curves of the nomogram showed that it had excellent predictive ability. Moreover, in vitro quantitative real-time PCR (qPCR) results showed that the mRNA expression levels of CXCL2, LYZ, and PARVB were significantly higher in the DLBCL group. CONCLUSIONS We developed a genetic risk model based on NRGs to predict the prognosis of patients with DLBCL, which may assist in the selection of treatment drugs for these patients.
Collapse
Affiliation(s)
- Huizhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Guifen Xiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mingwei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Yusong Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liu He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Jue Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Qian Fang
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310000, China
| | - Ling Li
- Department of Blood Transfusion, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China.
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
7
|
Helfen A, Rieß J, Fehler O, Stölting M, An Z, Kocman V, Schnepel A, Geyer C, Gerwing M, Masthoff M, Vogl T, Höltke C, Roth J, Ng T, Wildgruber M, Eisenblätter M. In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker. Neoplasia 2022; 28:100792. [PMID: 35367789 PMCID: PMC8983428 DOI: 10.1016/j.neo.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE As a promotor of tumor invasion and tumor microenvironment (TME) formation, the protein complex S100A8/S100A9 is associated with poor prognosis. Our aim was to further evaluate its origin and regulatory effects, and to establish an imaging biomarker for TME activity. METHODS S100A9-/-cells (ko) were created from syngeneic murine breast cancer 4T1 (high malignancy) and 67NR (low malignancy) wildtype (wt) cell lines and implanted into either female BALB/c wildtype or S100A9-/- mice (n = 10 each). Anti-S100A9-Cy5.5-targeted fluorescence reflectance imaging was performed at 0 h and 24 h after injection. Potential early changes of S100A9-presence under immune checkpoint inhibition (anti-PD-L1, n = 7 vs. rat IgG2b as isotype control, n = 3) were evaluated. RESULTS In S100A9-/-mice contrast-to-noise-ratios were significantly reduced for wt and S100A9-/-tumors. No significant differences were detected for 4T1 ko and 67NR ko cells as compared to wildtype cells. Under anti-PD-L1 treatment S100A9 presence significantly decreased compared with the control group. CONCLUSION Our results confirm a secretion of S100A8/S100A9 by the TME, while tumor cells do not apparently release the protein. Under immune checkpoint inhibition S100A9-imaging reports an early decrease of TME activity. Therefore, S100A9-specific imaging may serve as an imaging biomarker for TME formation and activity.
Collapse
Affiliation(s)
- Anne Helfen
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany.
| | - Jan Rieß
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Miriam Stölting
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Zhengwen An
- The CRUK City of London Cancer Centre, SE1 9RT London, UK
| | - Vanessa Kocman
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Annika Schnepel
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Christiane Geyer
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Mirjam Gerwing
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Max Masthoff
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Carsten Höltke
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Tony Ng
- The CRUK City of London Cancer Centre, SE1 9RT London, UK; UCL Cancer Institute, University College London, SE1 9RT London, UK; School of Cancer and Pharmaceutical Sciences, King´s College London, SE1 9RT London, UK
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department for Radiology, LMU Munich, D-81377 Munich, Germany
| | - Michel Eisenblätter
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
| |
Collapse
|
8
|
de Lima-Souza RA, Scarini JF, Lavareze L, Emerick C, dos Santos ES, Leme AFP, Egal ESA, Altemani A, Mariano FV. Protein markers of primary Salivary Gland Tumors: A systematic review of proteomic profiling studies. Arch Oral Biol 2022; 136:105373. [DOI: 10.1016/j.archoralbio.2022.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
9
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
10
|
Current advances in prognostic and diagnostic biomarkers for solid cancers: Detection techniques and future challenges. Biomed Pharmacother 2021; 146:112488. [PMID: 34894516 DOI: 10.1016/j.biopha.2021.112488] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Solid cancers are one of the leading causes of cancer related deaths, characterized by rapid growth of tumour, and local and distant metastases. Current advances on multimodality care have substantially improved local control and metastasis-free survival of patients by resection of primary tumour. The major concern in disease prognosis is the timely detection of resectable or metastatic tumour, thus reinforcing the need for identification of biomarkers for premalignant lesions of solid cancer. This ultimately improves the outcome for the patients. Therefore, the purpose of this review is to update the recent advancements on prognostic and diagnostic biomarkers to enhance early detection of common solid cancers including, breast, lung, colorectal, prostate and stomach cancer. We also provide an insight into Food and Drug Administration (FDA)-approved solid cancers biomarkers; various conventional techniques used for detection of prognostic and diagnostic biomarkers and discuss approaches to turn challenges in this field into opportunities.
Collapse
|
11
|
Zhou T, Li M, Xiao Z, Cai J, Zhao W, Duan J, Yang Z, Guo Z, Chen Y, Cai W, Huang P, He C, Xu F. Chronic Stress-Induced Gene Changes In Vitro and In Vivo: Potential Biomarkers Associated With Depression and Cancer Based on circRNA- and lncRNA-Associated ceRNA Networks. Front Oncol 2021; 11:744251. [PMID: 34650925 PMCID: PMC8507324 DOI: 10.3389/fonc.2021.744251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) have been considered as biomarkers or regulators in many diseases. However, the exact role of circRNA- or lncRNA-mediated competing endogenous RNA (ceRNA) networks in the modulation of depression pathogenesis-relevant processes is not clear. In this study, we profiled whole transcriptome in depression patients’ blood samples via microarray analysis. As a result, a total of 340 circRNAs, 398 lncRNAs, 206 miRNAs, and 92 mRNAs were differentially expressed between the depression and control groups. Then, we constructed ceRNA networks according to the differentially expressed genes (DEGs). Using bioinformatics analysis, 89 pairs of circRNA-ceRNA and 49 pairs of lncRNA-ceRNA networks were obtained. Since depression is a broad and heterogeneous condition that is known as promoter for many chronic diseases including cancer, so we further dug out 28 circRNAs, 61 lncRNAs, 26 miRNAs, and 29 mRNAs that are associated with cancer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were significantly enriched in cancer-related signaling pathways such as MAPK, Wnt, IL-17, Ras, and PI3K-Akt. Genes involved in the above pathways such as S100A9, GATA2, SRFP5, SLC45A3, NTRK1, FRZB, has_circ_0014221, has_circ_0014220, and has_circ_0087100 were dysregulated in various cancer cell lines by stress hormones induced. HDC, GATA2, SLC45A3, and NTRK1 were downregulated in tumor-bearing mice subjected to chronic unpredictable mild stress (CUMS). LncRNA-mediated ceRNA network validation showed that overexpression of miR-4530 declined HDC level. Our findings highlight the potential circRNA- and lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of depression and as potential biomarkers in depression cancer comorbidity through the pathways of IL-17 or histidine metabolism.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Mingming Li
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhijun Xiao
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jian Cai
- Department of Pharmacy, Fengxian Mental Health Center, Shanghai, China
| | - Weiwei Zhao
- Department of Laboratory Medicine, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhijun Guo
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Yitian Chen
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Weijia Cai
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Piaopiao Huang
- Department of Pharmacy, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Chaoyong He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Feng Xu
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
12
|
Liao J, Li JZ, Xu J, Xu Y, Wen WP, Zheng L, Li L. High S100A9 + cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging (Albany NY) 2021; 13:16367-16380. [PMID: 34157683 PMCID: PMC8266308 DOI: 10.18632/aging.203162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
S100A9 is differentially expressed in various cell types and is associated with the development, progression and metastasis of various cancers. However, the expression, distribution, and clinical significance of S100A9 in hepatocellular carcinoma (HCC) remain unclear. In the present study, The Cancer Genome Atlas (TCGA) database was used to examine S100A9 gene expression in HCC; we found that S100A9 expression was associated with HCC prognosis. In addition, S100A9 protein expression was assessed by immunohistochemistry analysis of tissues from 382 HCC patients. We found that the infiltration of S100A9+ cells in both tumor and nontumor tissues could predict poor overall survival (P = 0.0329, tumor; P = 0.0003, nontumor) and a high recurrence risk (P = 0.0387, tumor; P = 0.0015, nontumor) in our tissue microarray analysis. Furthermore, immunofluorescence double staining revealed that the primary S100A9-expressing cells in adjacent nontumoral tissue were CD15+ neutrophils, and both CD68+ macrophages and CD15+ neutrophils expressed S100A9 in HCC tumor tissues. Taken together, the results suggest that high S100A9+ cell density predicts a poor prognosis in HCC patients, and S100A9 expression could potentially serve as an independent prognostic marker for HCC.
Collapse
Affiliation(s)
- Jing Liao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.,Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jin-Zhu Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yongquan Xu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei-Ping Wen
- Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lian Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
13
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|