1
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Liu X, Hee S, Sapir NG, Li A, Farkruzzaman S, Liu J, Chen Y. n-Bu 4NI/K 2S 2O 8-MEDIATED C-N COUPLING BETWEEN ALDEHYDES AND AMIDES. European J Org Chem 2024; 27:e202400067. [PMID: 39051029 PMCID: PMC11268833 DOI: 10.1002/ejoc.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 07/27/2024]
Abstract
n-Bu4NI/K2S2O8 mediated C-N coupling between aldehydes and amides is reported. A strong electronic effect is observed on the aromatic aldehyde substrates. The transformylation from aldehyde to amide takes place exclusively when an aromatic aldehyde bears electron-donating groups at either the ortho or para position of the formyl group, while the cross-dehydrogenative coupling dominates in the absence of these groups. Both the density functional theory (DFT) thermochemistry calculations and experimental data support the proposed single electron transfer mechanism with the formation of an acyl radical intermediate in the cross-dehydrogenative coupling. The n-Bu4NI/K2S2O8 mediated oxidative cyclization between 2-aminobenzamide and aldehydes is also reported, with four quinazolin-4(3H)-ones prepared in 65-99% yields.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Samual Hee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Netanel G Sapir
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Alvin Li
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Syed Farkruzzaman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York, 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| |
Collapse
|
3
|
Liu X, Hee S, Sapir NG, Li A, Liu J, Chen Y. n-Bu 4NI/K 2S 2O 8 Mediated Csp 2-Csp 2 Bond Cleavage - Transformylation from p-Anisaldehyde to Primary Amides. Adv Synth Catal 2024; 366:2489-2494. [PMID: 38895098 PMCID: PMC11182648 DOI: 10.1002/adsc.202301505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 06/21/2024]
Abstract
n-Bu4NI/K2S2O8 mediated transformylation from p-anisaldehyde to primary amides is reported. The mechanistic studies suggest the reaction occurs via a single electron transfer pathway. Based on the DFT electronic structure calculations of various reaction pathways, the most plausible mechanism involves the formation of a phenyl radical cation and an arenium ion as the key intermediates. It represents the first example where p-anisaldehyde is employed as a formyl source via a non-metal mediated Csp2-Csp2 bond cleavage.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Samual Hee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Netanel G Sapir
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
| | - Alvin Li
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| |
Collapse
|
4
|
Reddy RJ, Kumar JJ, Kumari AH. Recent trends in the synthesis and applications of β-iodovinyl sulfones: a decade of progress. Org Biomol Chem 2024; 22:2492-2509. [PMID: 38446020 DOI: 10.1039/d3ob01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Direct vicinal difunctionalization of π-systems has emerged as a powerful platform for constructing multiple bonds in a single synthetic operation using simple chemical feedstocks. Over the past decade, there has been exponential growth in the direct construction of successive C-S and C-I bonds using a wide variety of sulfonyl and iodide reactants through 1,2-iodosulfonylation of alkynes in a regio- and stereo-selective manner. In this review, we mainly focus on the recent developments in the preparation of β-iodovinyl sulfones and their practical applications in organic synthesis. The most promising photoredox and electrochemical transformations for synthesizing β-iodovinyl sulfones are also reviewed. The multifunctional β-iodovinyl sulfones have recently been burgeoning as versatile synthetic precursors due to the combination of vinyl iodide and vinyl sulfone moieties, essential building blocks for diverse synthetic manipulations. We hereby present the chemistry of β-iodovinyl sulfones, which can be classified into numerous sections based on the sulfonyl surrogates, and potential synthetic approaches are systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
5
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
6
|
Zhang MZ, Li WT, Li YY, Wang Q, Li C, Liu YH, Yin JX, Yang X, Huang H, Chen T. Discovery of an Oxidative System for Radical Generation from Csp 3-H Bonds: A Synthesis of Functionalized Oxindoles. J Org Chem 2021; 86:15544-15557. [PMID: 34570502 DOI: 10.1021/acs.joc.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and versatile method for generating radicals from Csp3-H bonds under metal-free and organic-peroxide-free conditions was developed. By combining safe persulfate and low-toxic quaternary ammonium salt, a wide variety of Csp3-H compounds including ethers, (hetero)aromatic/aliphatic ketones, alkylbenzenes, alkylheterocycles, cycloalkanes, and haloalkanes were selectively activated to generate the corresponding C-centered radicals, which could be further captured by N-arylacrylamides to deliver the valuable functionalized oxindoles. Good functional group tolerance was demonstrated. The useful polycarbonyl compound and esters were also modified with the strategy. Moreover, the combination can also be applied to the practical coupling between simple haloalkanes and N-hydroxyphthalimide (NHPI).
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Wan-Ting Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuan-Yuan Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Qi Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Chong Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yan-Hao Liu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jin-Xing Yin
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Xin Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Zhang Y, Vessally E. Direct halosulfonylation of alkynes: an overview. RSC Adv 2021; 11:33447-33460. [PMID: 35497552 PMCID: PMC9042254 DOI: 10.1039/d1ra03443j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
The difunctionalization reactions of easily available and inexpensive alkynes have emerged as a reliable, powerful, and step-economical approach for the construction of highly substituted complex alkenes in a one-pot manner, without the need for isolation of intermediates. A wide variety of transformations based on this concept have been successfully achieved for the preparation of synthetically and biologically important β-halovinyl sulfone scaffolds. In this Review, we summarize the recent advances and developments in this field and present a comprehensive overview of halosulfonylation of alkyne substrates with emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yujun Zhang
- School of Chemistry and Environmental Engineering, Hanshan Normal University Chaozhou 521041 Guangdong P. R. China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
8
|
Zhang X, Lu D, Wang Z. Electrochemical Induced Regio‐ and Stereoselective Difunctionalization of Alkynes: The Synthesis of (
E
)‐β‐Iodovinyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xinghua Zhang
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Hai-Quan Road Shanghai 201418 China
- Institute of Drug Discovery Technology Ningbo University Ningbo 315211 China
| | - Danna Lu
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Hai-Quan Road Shanghai 201418 China
| | - Zhenwei Wang
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Hai-Quan Road Shanghai 201418 China
| |
Collapse
|
9
|
Raghuvanshi DS, Verma N. An iodine-mediated new avenue to sulfonylation employing N-hydroxy aryl sulfonamide as a sulfonylating agent. Org Biomol Chem 2021; 19:4760-4767. [PMID: 33978047 DOI: 10.1039/d1ob00036e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel and highly efficient I2/K2CO3 mediated regioselective sulfonylation of thiophenols, aryl acetylenic acid and aromatic alkynes with N-hydroxy sulfonamide has been developed. N-hydroxy sulfonamide has been used for the first time for the synthesis of these sulfones. The scope and versatility of the reaction has been demonstrated by the regio- and stereoselective synthesis of different analogs of sulfones with various structural features.
Collapse
Affiliation(s)
- Dushyant Singh Raghuvanshi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Narsingh Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India. and Academy of Scientific and Innovative Research, Ghaziabad, 221002, India
| |
Collapse
|
10
|
Wang Y, Xiong G, Zhang C, Chen Y. Controllable Activation of β-Alkyl Nitroalkenes: Regioselective Synthesis of Allyl and Vinyl Sulfones. J Org Chem 2021; 86:4018-4026. [DOI: 10.1021/acs.joc.0c02869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ye Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Guowei Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chuanxin Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
11
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Luo D, Min L, Zheng W, Shan L, Wang X, Hu Y. Introduction of N,N'-disulfonylhydrazines as new sulfonylating reagents for highly efficient synthesis of (E)-β-iodovinyl arenesulfones under mild conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zhao S, Chen K, Zhang L, Yang W, Huang D. Sulfonyl Hydrazides in Organic Synthesis: A Review of Recent Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000466] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuangte Zhao
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Kaijun Chen
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Ling Zhang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Weiguang Yang
- The Marine Biomedical Research InstituteGuangdong Medical University Zhanjiang 524023, Guangdong Province
| | - Dayun Huang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| |
Collapse
|
14
|
Reddy RJ, Kumar JJ, Kumari AH, Krishna GR. Pd‐Catalyzed Annulation of β‐Iodovinyl Sulfones with 2‐Halophenols: A General Route for the Synthesis of 3‐Sulfonyl Benzofuran Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | | |
Collapse
|
15
|
Kumar S, Padala K. The recent advances in K2S2O8-mediated cyclization/coupling reactions via an oxidative transformation. Chem Commun (Camb) 2020; 56:15101-15117. [DOI: 10.1039/d0cc06036d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently the K2S2O8 mediated cyclization/coupling reactions to construct carbon–carbon/carbon–heteroatom bond via oxidative transformation is became much interesting in organic synthesis.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| | - Kishor Padala
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
16
|
Balgotra S, Verma PK, Vishwakarma RA, Sawant SD. Catalytic advances in direct functionalizations using arylated hydrazines as the building blocks. CATALYSIS REVIEWS 2019. [DOI: 10.1080/01614940.2019.1702191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shilpi Balgotra
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
17
|
Jiang H, Yan W, Huang J, Tan C, Zhan L, Wu W. Palladium‐Catalyzed Regio‐ and Stereoselective Sulfonylation of Aryl Propiolates with Sulfonyl Hydrazides: Access to (
E
)‐
β
‐Aryl Sulfonyl Acrylates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Wuxin Yan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Jiuzhong Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Chaowei Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Lingzhi Zhan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
18
|
Reddy RJ, Kumar JJ, Kumari AH. Unprecedented Reactivity of β-Iodovinyl Sulfones: An Efficient Synthesis of β-Keto Sulfones and β-Keto Thiosulfones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry; University College of Science; Osmania University; Hyderabad 500 007 India
| | - Jangam Jagadesh Kumar
- Department of Chemistry; University College of Science; Osmania University; Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry; University College of Science; Osmania University; Hyderabad 500 007 India
| |
Collapse
|
19
|
Hou Y, Zhu L, Hu H, Chen S, Li Z, Liu Y, Gong P. Iodine promoted iodosulfonylation of alkynes with sulfonyl hydrazides in an aqueous medium: highly stereoselective synthesis of (E)-β-iodo vinylsulfones. NEW J CHEM 2018. [DOI: 10.1039/c8nj01145a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient, molecular iodine-promoted MCR of alkynes and sulfonyl hydrazide for the synthesis of (E)-β-iodo vinylsulfone derivatives has been developed.
Collapse
Affiliation(s)
- Yunlei Hou
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Liangyu Zhu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Hao Hu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Shaowei Chen
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Zefei Li
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Yajing Liu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Ping Gong
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| |
Collapse
|