1
|
Zhang T, Liu Y, Xin H, Tian J, Deng T, Meng K, An Y, Xue W. Synthesis and Antifungal Activity of Chalcone Derivatives Containing 1,3,4-Thiadiazole. Chem Biodivers 2024; 21:e202401031. [PMID: 38769733 DOI: 10.1002/cbdv.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
24 chalcone derivatives containing 1,3,4-thiadiazole were synthesized. The results of bioactivity tests indicated that some of the target compounds exhibited superior antifungal activities in vitro. Notably, the EC50 value of D4 was 14.4 μg/mL against Phomopsis sp, which was significantly better than that of azoxystrobin (32.2 μg/mL) and fluopyram (54.2 μg/mL). The in vivo protective activity of D4 against Phomopsis sp on kiwifruit (71.2 %) was significantly superior to azoxystrobin (62.8 %) at 200 μg/mL. The in vivo protective activities of D4 were 74.4 and 57.6 % against Rhizoctonia solani on rice leaf sheaths and rice leaves, respectively, which were slightly better than those of azoxystrobin (72.1 and 49.2 %) at 200 μg/mL. Scanning electron microscopy (SEM) results showed that the mycelial surface collapsed, contracted and grew abnormally after D4 treatment. Finally, the results were further verified by in vivo antifungal assay, fluorescence microscopy (FM) observation, determination of relative conductivity, membrane lipid peroxidation degree assay, and determination of cytoplasmic content leakage. Molecular docking results suggested that D4 could be a potential SDHI.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yi Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianyu Deng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Ismail MF, El-Sayed AA, Hosni EM, Hassaballah AI. Synthesis and evaluation of larvicidal efficacy against C. pipiens of some new heterocyclic compounds emanated from 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide. Chem Biodivers 2024; 21:e202301560. [PMID: 38251927 DOI: 10.1002/cbdv.202301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5 ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.
Collapse
Affiliation(s)
- Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Eslam M Hosni
- Department of Entomology, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
3
|
Abbass EM, Ali AK, El-Farargy AF, Abdel-Haleem DR, Shaban SS. Synthesis, toxicological and in silico evaluation of novel spiro pyrimidines against Culex pipiens L. referring to chitinase enzyme. Sci Rep 2024; 14:1516. [PMID: 38233515 PMCID: PMC10794250 DOI: 10.1038/s41598-024-51771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
The exponential development of resistance to conventional chemical insecticides adds another important motive for the creation of novel insecticidal active agents. One of the keys to meeting this challenge is the exploration of novel classes of insecticidal molecules with different modes of action. Herein, a novel series of spiro pyrimidine derivatives was prepared using some green synthetic methodologies such as microwave irradiation, and sonication under ultrasound waves. Spiro pyrimidine aminonitrile 1 is a key starting material for the synthesis of targets 2-9 by reaction with different carbon electrophiles and nitrogen nucleophiles. The structures of all the newly synthesized compounds were approved using spectral data. The toxicological efficiency and biological impacts of the synthesized spiro pyrimidine derivatives were assessed against Culex pipiens L. larvae. The toxicity of synthesized compounds showed remarkable variations against the C. pipiens larvae. Where, 3, 4 and 2 were the most efficient compounds with LC50 values of 12.43, 16.29 and 21.73 µg/mL, respectively. While 1 was the least potent compound with an LC50 value of 95.18 µg/mL. As well, other compounds were arranged according to LC50 values as follows 5 > 7 > 6 > 9 > 8. In addition, 3 and 4 exhibited significant prolongation of the developmental duration and greatly inhibited adult emergence. Moreover, many morphological deformities were observed in all developmental stages. Furthermore, cytotoxicity of the most effective compounds was assessed against the normal human cells (WI-38) as non-target organisms, where compounds 2, 4 and 3 showed weak to non-toxic effects. The study of binding affinity and correlation between chemical structure and reactivity was carried out using molecular docking study and DFT calculations to investigate their mode of action. This study shed light on promising compounds with larvicidal activity and biological impacts on the C. pipiens life cycle.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
4
|
Mao G, Tian Y, Shi J, Liao C, Huang W, Wu Y, Wen Z, Yu L, Zhu X, Li J. Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety. Molecules 2024; 29:285. [PMID: 38257199 PMCID: PMC10820687 DOI: 10.3390/molecules29020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
To effectively control the infection of plant pathogens, we designed and synthesized a series of phenylthiazole derivatives containing a 1,3,4-thiadiazole thione moiety and screened for their antibacterial potencies against Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, as well as their antifungal potencies against Sclerotinia sclerotiorum, Rhizoctonia solani, Magnaporthe oryzae and Colletotrichum gloeosporioides. The chemical structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The bioassay results revealed that all the tested compounds exhibited moderate-to-excellent antibacterial and antifungal activities against six plant pathogens. Especially, compound 5k possessed the most remarkable antibacterial activity against R. solanacearum (EC50 = 2.23 μg/mL), which was significantly superior to that of compound E1 (EC50 = 69.87 μg/mL) and the commercial agent Thiodiazole copper (EC50 = 52.01 μg/mL). Meanwhile, compound 5b displayed the most excellent antifungal activity against S. sclerotiorum (EC50 = 0.51 μg/mL), which was equivalent to that of the commercial fungicide Carbendazim (EC50 = 0.57 μg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing an electron-withdrawing group at the meta-position and ortho-position of the benzene ring could endow the final structure with remarkable antibacterial and antifungal activity, respectively. The current results indicated that these compounds were capable of serving as promising lead compounds.
Collapse
Affiliation(s)
- Guoqing Mao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Yao Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Jinchao Shi
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Changzhou Liao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Weiwei Huang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Yiran Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Zhou Wen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Linhua Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xiang Zhu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Junkai Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.M.); (Y.T.); (J.S.); (C.L.); (W.H.); (Y.W.); (Z.W.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|
5
|
Palladium-Catalyzed Synthesis of Novel Quinazolinylphenyl-1,3,4-thiadiazole Conjugates. Catalysts 2022. [DOI: 10.3390/catal12121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two novel series of symmetrical and unsymmetrical conjugates, in which 1,3,4-thiadiazole and 4-N,N-dimethylaminoquinazoline scaffolds were connected via 1,4-phenylene linker, were synthetized in high yields by Suzuki cross-coupling reactions. The elaborated protocol makes use of bromo-substituted quinazolines, boronic acid pinacol ester or diboronic acid bis(pinacol)ester of 2,5-diphenyl-1,3,4-thiadiazole, catalytic amounts of [1,10-bis(diphenylphosphino)ferrocene]dichloropalladium(II) Pd(dppf)Cl2, sodium carbonate, and tetrabutylammonium bromide, which plays the role of a phase-transfer catalyst. The structures of prepared compounds were confirmed by 1H NMR, 13C NMR, UV-VIS, IR and HRMS. For the target compounds, the fluorescence spectra were measured to determine their quantum yields and Stokes shifts. The study revealed that among the tested compounds, two highly-conjugated derivatives (8a, 9a), in which 1,3,4-thiadiazole core is connected to 4-(N,N-dimethylamino)quinazoline via a double 1,4-phenylene linker, exhibit high quantum yields of fluorescence and strong fluorescence emission.
Collapse
|
6
|
Diverse Biological Activities of 1,3,4-Thiadiazole Scaffold. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemistry of 1,3,4-thiadiazole is one of the most interesting scaffolds for synthesizing new drug molecules due to their numerous pharmacological activities. Several modifications in the thiadiazole ring have been made, proving it to be more potent and highly effective with a less toxic scaffold for various biological activities. There are several marketed drugs containing 1,3,4-thiadiazole ring in their structure. In this review article, we have tried to compile the newly synthesized 1,3,4-thiadiazole derivatives possessing important pharmaceutical significance since 2014.
Collapse
|
7
|
Alizadeh-Bami F, Mehrabi H. Green Synthesis of Novel [1,3,4]Thiadiazolo[3,2-a]Pyrimidines via Three-Component Reaction of 5-Amino-1,3,4-Thiadiazole-2-Thiol, Aromatic Aldehydes, and Meldrum’s Acid. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Hossein Mehrabi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
8
|
Katouah HA. Synthesis, Antioxidant, and Cytotoxic Activities of New 1,3,4-Thiadiazoldiazenylacrylonitrile Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hanadi A. Katouah
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Ibrahim SA, Salem MM, Elsalam HAA, Noser AA. Design, synthesis, in-silico and biological evaluation of novel 2-Amino-1,3,4-thiadiazole based hydrides as B-cell lymphoma-2 inhibitors with potential anticancer effects. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Alanazi M, Arafa WA, Althobaiti IO, Altaleb HA, Bakr RB, Elkanzi NAA. Green Design, Synthesis, and Molecular Docking Study of Novel Quinoxaline Derivatives with Insecticidal Potential against Aphis craccivora. ACS OMEGA 2022; 7:27674-27689. [PMID: 35967065 PMCID: PMC9366785 DOI: 10.1021/acsomega.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
An efficient and environmentally friendly method was established for designing novel 3-amino-1,4-dihydroquinoxaline-2-carbonitrile (1) via the reaction of bromomalononitrile and benzene-1,2-diamine under microwave irradiation in an excellent yield (93%). This targeted amino derivative was utilized for the construction of a series of Schiff bases (8-13). A new series of thiazolidinone derivatives (15-20) were synthesized in high yields (89-96%) via treatment of thioglycolic acid with Schiff bases (8-13) under microwave irradiation in high yields (89-96%). Moreover, new pyrimidine derivatives (26-30 and 35-38) were prepared by treatment of compound 1 with arylidenes (21-25) and/or alkylidenemalononitriles (31-34) using piperidine as a basic catalyst under microwave conditions. Based on elemental analyses and spectral data, the structures of the new assembled compounds were determined. The newly synthesized quinoxaline derivatives were screened and studied as an insecticidal agent against Aphis craccivora. The obtained results indicate that compound 16 is the most toxicological agent against nymphs of cowpea aphids (Aphis craccivora) compared to the other synthesized pyrimidine and thiazolidinone derivatives. The molecular docking study of the new quinoxaline derivatives registered that compound 16 had the highest binding score (-10.54 kcal/mol) and the thiazolidinone moiety formed hydrogen bonds with Trp143.
Collapse
Affiliation(s)
- Mariam
Azzam Alanazi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
| | - Wael A.A. Arafa
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Ibrahim O. Althobaiti
- Department
of Chemistry, College of Science and Arts, Jouf University, Sakaka 42421, Saudi Arabia
| | - Hamud A. Altaleb
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Aswan University, P.O. Box 81528, Aswan 81528, Egypt
| |
Collapse
|
11
|
Zou R, Li B, Duan W, Lin G, Cui Y. Synthesis of 3-carene-derived nanocellulose/1,3,4-thiadiazole-amide complexes with antifungal activity for plant protection. PEST MANAGEMENT SCIENCE 2022; 78:3277-3286. [PMID: 35484724 DOI: 10.1002/ps.6952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nanopesticides have been proved to be a powerful and promising tool to solve the issues in agriculture. The purpose of the present study was to develop ecofriendly nanopesticide systems by the strategy of comprehensive utilization of two natural biomass resources (bagasse and turpentine oil) because of their incomparable advantages. RESULTS In this research, a series of nanocellulose carriers ETOCN-1-ETOCN-4 (ETOCN, esterified TEMPO-oxidized cellulose nanofibers) with different degrees of substitution were prepared and characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Then, 21 1,3,4-thiadiazole-amide compounds 8a-8u containing gem-dimethylcyclopropane ring were designed, synthesized and characterized. A preliminary bioassay indicated that compound 8i (R = p-Br Ph) exhibited broad-spectrum antifungal activity against the tested fungi. Furthermore, drug-loading complexes 8i/ETOCN-1-8i/ETOCN-4 were fabricated by integration of nanocellulose-based carriers ETOCN-1-ETOCN-4 with bioactive compound 8i, and the drug-loading capacities, microstructures and sustained-releasing performance of these complexes were also investigated. According to the observation of scanning electron microscopy (SEM) images of complex 8i/ETOCN-2, the small-molecule drug and the carrier formed a well-distributed and compact complex, which led to the excellent drug-loading capacity and sustained-releasing performance in the ethanol/water (1:1, v/v) system. CONCLUSIONS Complexes 8i/ETOCN-1-8i/ETOCN-4 deserved further study as the promising candidates for the development of nanopesticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renxuan Zou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Yucheng Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| |
Collapse
|
12
|
Ismail MF, Aly AF, Abdel-Wahab SS, El-Sayed AA. Synthesis, Characterization and Insecticidal Activity against Cotton Leaf Worm of New Heterocyclics Which Scaffold on Hydrazide-Hydrazone Derivative. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2026990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahmoud F. Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Aly Fahmy Aly
- Central Agricultural Pesticide Lab., Pesticide Formulations Department, Agricultural Research Center, Dokky, Giza, Egypt
| | | | - Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
13
|
Ali SMM, Salem MS, Madkour HMF, Zidan A. 2(1H)-Pyridone and Quinolone as Synthon for Efficient and Simple Synthesis of Polysubstituted Pyridines and Quinolines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samar Mosad Mohamed Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Cairo, Egypt
- High Institute of Optics Technology – Sheraton, Cairo, Egypt
| | - Marwa S. Salem
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Cairo, Egypt
| | - Hassan M. F. Madkour
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Cairo, Egypt
| | - Alaa Zidan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Cairo, Egypt
- Faculty of Science, Galala University, New Galala City, Egypt
| |
Collapse
|