1
|
Nymo IH, Seppola M, Al Dahouk S, Bakkemo KR, Jiménez de Bagüés MP, Godfroid J, Larsen AK. Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata). PLoS One 2016; 11:e0159272. [PMID: 27415626 PMCID: PMC4944957 DOI: 10.1371/journal.pone.0159272] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Pathology has not been observed in true seals infected with Brucella pinnipedialis. A lack of intracellular survival and multiplication of B. pinnipedialis in hooded seal (Cystophora cristata) macrophages in vitro indicates a lack of chronic infection in hooded seals. Both epidemiology and bacteriological patterns in the hooded seal point to a transient infection of environmental origin, possibly through the food chain. To analyse the potential role of fish in the transmission of B. pinnipedialis, Atlantic cod (Gadus morhua) were injected intraperitoneally with 7.5 x 107 bacteria of a hooded seal field isolate. Samples of blood, liver, spleen, muscle, heart, head kidney, female gonads and feces were collected on days 1, 7, 14 and 28 post infection to assess the bacterial load, and to determine the expression of immune genes and the specific antibody response. Challenged fish showed an extended period of bacteremia through day 14 and viable bacteria were observed in all organs sampled, except muscle, until day 28. Neither gross lesions nor mortality were recorded. Anti-Brucella antibodies were detected from day 14 onwards and the expression of hepcidin, cathelicidin, interleukin (IL)-1β, IL-10, and interferon (IFN)-γ genes were significantly increased in spleen at day 1 and 28. Primary mononuclear cells isolated from head kidneys of Atlantic cod were exposed to B. pinnipedialis reference (NCTC 12890) and hooded seal (17a-1) strain. Both bacterial strains invaded mononuclear cells and survived intracellularly without any major reduction in bacterial counts for at least 48 hours. Our study shows that the B. pinnipedialis strain isolated from hooded seal survives in Atlantic cod, and suggests that Atlantic cod could play a role in the transmission of B. pinnipedialis to hooded seals in the wild.
Collapse
Affiliation(s)
- Ingebjørg Helena Nymo
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Marit Seppola
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Sascha Al Dahouk
- Federal Institute for Risk Assessment, Berlin, Germany
- RWTH Aachen University, Department of Internal Medicine III, Aachen, Germany
| | | | - María Pilar Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón–IA2 (CITA–Universidad de Zaragoza), Zaragoza, Spain
| | - Jacques Godfroid
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
2
|
Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model. PLoS One 2016; 11:e0150432. [PMID: 26959235 PMCID: PMC4784796 DOI: 10.1371/journal.pone.0150432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.
Collapse
|
3
|
Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2014; 5:213. [PMID: 24860561 PMCID: PMC4026726 DOI: 10.3389/fmicb.2014.00213] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional Heredia, Costa Rica ; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| |
Collapse
|
4
|
Larsen AK, Nymo IH, Briquemont B, Sørensen KK, Godfroid J. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells. PLoS One 2013; 8:e84861. [PMID: 24376851 PMCID: PMC3869908 DOI: 10.1371/journal.pone.0084861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.
Collapse
Affiliation(s)
- Anett K. Larsen
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
- * E-mail:
| | - Ingebjørg H. Nymo
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Benjamin Briquemont
- Faculty of Science, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Karen K. Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Jacques Godfroid
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| |
Collapse
|
5
|
Nymo IH, Tryland M, Godfroid J. A review of Brucella infection in marine mammals, with special emphasis on Brucella pinnipedialis in the hooded seal (Cystophora cristata). Vet Res 2011; 42:93. [PMID: 21819589 PMCID: PMC3161862 DOI: 10.1186/1297-9716-42-93] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
Brucella spp. were isolated from marine mammals for the first time in 1994. Two novel species were later included in the genus; Brucella ceti and Brucella pinnipedialis, with cetaceans and seals as their preferred hosts, respectively. Brucella spp. have since been isolated from a variety of marine mammals. Pathological changes, including lesions of the reproductive organs and associated abortions, have only been registered in cetaceans. The zoonotic potential differs among the marine mammal Brucella strains. Many techniques, both classical typing and molecular microbiology, have been utilised for characterisation of the marine mammal Brucella spp. and the change from the band-based approaches to the sequence-based approaches has greatly increased our knowledge about these strains. Several clusters have been identified within the B. ceti and B. pinnipedialis species, and multiple studies have shown that the hooded seal isolates differ from other pinniped isolates. We describe how different molecular methods have contributed to species identification and differentiation of B. ceti and B. pinnipedialis, with special emphasis on the hooded seal isolates. We further discuss the potential role of B. pinnipedialis for the declining Northwest Atlantic hooded seal population.
Collapse
Affiliation(s)
- Ingebjørg H Nymo
- Department of Food Safety and Infection Biology, Section of Arctic Veterinary Medicine, the Norwegian School of Veterinary Science, Stakkevollveien 23, N-9010 Tromsø, Norway
- Member of Fram - High North Research Centre for Climate and the Environment, Hjalmar Johansens gate 14, N-9296 Tromsø, Norway
| | - Morten Tryland
- Department of Food Safety and Infection Biology, Section of Arctic Veterinary Medicine, the Norwegian School of Veterinary Science, Stakkevollveien 23, N-9010 Tromsø, Norway
- Member of Fram - High North Research Centre for Climate and the Environment, Hjalmar Johansens gate 14, N-9296 Tromsø, Norway
| | - Jacques Godfroid
- Department of Food Safety and Infection Biology, Section of Arctic Veterinary Medicine, the Norwegian School of Veterinary Science, Stakkevollveien 23, N-9010 Tromsø, Norway
- Member of Fram - High North Research Centre for Climate and the Environment, Hjalmar Johansens gate 14, N-9296 Tromsø, Norway
| |
Collapse
|