1
|
Sinclair J, New D, Neill M. Bovine TB in New Zealand - journey from epidemic towards eradication. Ir Vet J 2023; 76:21. [PMID: 37649127 PMCID: PMC10466679 DOI: 10.1186/s13620-023-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
Bovine tuberculosis (TB), caused by Mycobacterium bovis, has a unique and complex ecology in New Zealand. Unlike elsewhere in the world, the disease is maintained in Australian brushtail possums (Trichosurus vulpecula) and so they are considered a vector for disease transmission in New Zealand. Possums were initially introduced to the country in the 1800's to establish a fur industry but later becoming a recognized pest to native New Zealand flora and fauna. The TB programme in New Zealand (TBFree NZ Ltd) is managed by a not-for-profit limited company partnership between primary industries and government (OSPRI - Operational Solutions for Primary Industries) that uses the basic tenets of disease management, movement control and vector control to eliminate TB in farmed cattle and deer. Evidence of resounding success in the TB control programme resulted in the 2016 decision to pursue full biological eradication of disease from the country by 2055, with the interim objectives of TB freedom in livestock herds by 2026 and TB freedom in possums by 2040. The programme has progressed from an all-time high of 1698 infected herds in 1995 to the lowest recorded point prevalence of 18 infected herds in May 2022. Enhancements that have contributed to the success of the programme include testing with gamma-interferon release assay (Bovigam™) of animals in infected herds that are negative to the skin test (parallel interpretation), culturing pooled lymph nodes from animals without visible lesions, increased testing of herds post-clearance and introduction of post-movement testing of high-risk animals.
Collapse
Affiliation(s)
- Jane Sinclair
- OSPRI, 15 Willeston St, Wellington, 6011, New Zealand
| | - Dallas New
- OSPRI, 15 Willeston St, Wellington, 6011, New Zealand.
| | - Mark Neill
- OSPRI, 15 Willeston St, Wellington, 6011, New Zealand
| |
Collapse
|
2
|
Barnes B, Parsa M, Giannini F, Ramsey D. Analytical Bayesian models to quantify pest eradication success or species absence using zero-sighting records. Theor Popul Biol 2021; 144:70-80. [PMID: 34762902 DOI: 10.1016/j.tpb.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
It is not possible to establish the absence of a population with certainty using imperfect zero-sighting records, but absence can be inferred. In this paper we use Bayesian methods to formulate analytical inferred distributions and statistics. When such formulations are available, they offer a highly efficient and powerful means of analysis. Our purpose is to provide accessible and versatile formulations to support an assessment of population absence for management decisions, using data from a series of regular and targeted surveys with zero-sightings. The stochastic processes considered here are prior population size, growth and imperfect detection, which are combined into a single distribution with sufficient flexibility to accommodate alternative distributions for each of the driving processes. Analytical solutions formulated include the inferred mean and variance for population size or number of infested survey-units, the probability of absence, the probability of a series of negative surveys conditional on presence, and the probability a population is first detected in a given survey, although we also formulate other statistics and provide explicit thresholds designed to support management decisions. Our formulation and results are straightforward to apply and provide insight into the nonlinear interactions and general characteristics of such systems. Although motivated by an assessment of population absence following a pest eradication program, results are also relevant to the status of threatened species, to 'proof-of-freedom' requirements for trade, and for inferring population size when a population is first detected.
Collapse
Affiliation(s)
- B Barnes
- Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia; Australian National University, Canberra, Australia.
| | - M Parsa
- Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia
| | - F Giannini
- Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia
| | - D Ramsey
- Arthur Rylah Institute, Department of Environment, Land, Water and Planning, Victoria, Australia
| |
Collapse
|
3
|
Warburton B, Morriss G, Howard S. Increasing the capture rates of brushtail possums in Victor #1 leg-hold traps. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1926292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Grant Morriss
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Simon Howard
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| |
Collapse
|
4
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
5
|
García-Díaz P, Anderson DP. Evaluating the effects of landscape structure on the recovery of an invasive vertebrate after population control. LANDSCAPE ECOLOGY 2019; 34:615-626. [PMID: 31857743 PMCID: PMC6923137 DOI: 10.1007/s10980-019-00796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/05/2019] [Indexed: 06/10/2023]
Abstract
CONTEXT Effective landscape control of invasive species is context-dependent due to the interplay between the landscape structure, local population dynamics, and metapopulation processes. We use a modelling approach incorporating these three elements to explore the drivers of recovery of populations of invasive species after control. OBJECTIVES We aim to improve our understanding of the factors influencing the landscape-level control of invasive species. METHODS We focus on the case study of invasive brushtail possum (Trichosurus vulpecula) control in New Zealand. We assess how 13 covariates describing the landscape, patch, and population features influence the time of population recovery to a management density threshold of two possums/ha. We demonstrate the effects of those covariates on population recovery under three scenarios of population growth: logistic growth, strong Allee effects, and weak Allee effects. RESULTS Recovery times were rapid regardless of the simulated population dynamics (average recovery time < 2 years), although populations experiencing Allee effects took longer to recover than those growing logistically. Our results indicate that habitat availability and patch area play a key role in reducing times to recovery after control, and this relationship is consistent across the three simulated scenarios. CONCLUSIONS The control of invasive possum populations in patchy landscapes would benefit from a patch-level management approach (considering each patch as an independent management unit), whereas simple landscapes would be better controlled by taking a landscape-level view (the landscape as the management unit). Future research should test the predictions of our models with empirical data to refine control operations.
Collapse
|
6
|
|
7
|
Michael E, Smith ME, Katabarwa MN, Byamukama E, Griswold E, Habomugisha P, Lakwo T, Tukahebwa E, Miri ES, Eigege A, Ngige E, Unnasch TR, Richards FO. Substantiating freedom from parasitic infection by combining transmission model predictions with disease surveys. Nat Commun 2018; 9:4324. [PMID: 30337529 PMCID: PMC6193962 DOI: 10.1038/s41467-018-06657-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022] Open
Abstract
Stopping interventions is a critical decision for parasite elimination programmes. Quantifying the probability that elimination has occurred due to interventions can be facilitated by combining infection status information from parasitological surveys with extinction thresholds predicted by parasite transmission models. Here we demonstrate how the integrated use of these two pieces of information derived from infection monitoring data can be used to develop an analytic framework for guiding the making of defensible decisions to stop interventions. We present a computational tool to perform these probability calculations and demonstrate its practical utility for supporting intervention cessation decisions by applying the framework to infection data from programmes aiming to eliminate onchocerciasis and lymphatic filariasis in Uganda and Nigeria, respectively. We highlight a possible method for validating the results in the field, and discuss further refinements and extensions required to deploy this predictive tool for guiding decision making by programme managers. The decision when to stop an intervention is a critical component of parasite elimination programmes, but reliance on surveillance data alone can be inaccurate. Here, Michael et al. combine parasite transmission model predictions with disease survey data to more reliably determine when interventions can be stopped.
Collapse
Affiliation(s)
- Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Morgan E Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Moses N Katabarwa
- Emory University and The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| | | | - Emily Griswold
- Emory University and The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| | | | - Thomson Lakwo
- Vector Control Division, Ministry of Health, 15 Bombo Road, P.O. Box 1661, Kampala, Uganda
| | - Edridah Tukahebwa
- Vector Control Division, Ministry of Health, 15 Bombo Road, P.O. Box 1661, Kampala, Uganda
| | - Emmanuel S Miri
- The Carter Center, Nigeria, 1 Jeka Kadima Street off Tudun Wada Ring Road, Jos, Nigeria
| | - Abel Eigege
- The Carter Center, Nigeria, 1 Jeka Kadima Street off Tudun Wada Ring Road, Jos, Nigeria
| | - Evelyn Ngige
- Federal Ministry of Health, Federal Sceretariat, Garki-Abuja, Nigeria
| | - Thomas R Unnasch
- Global Health Infectious Disease Research, College of Public Health, University of South Florida, 33620, Tampa, FL, USA
| | - Frank O Richards
- Emory University and The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| |
Collapse
|
8
|
Rout TM, Baker CM, Huxtable S, Wintle BA. Monitoring, imperfect detection, and risk optimization of a Tasmanian devil insurance population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:267-275. [PMID: 28657164 DOI: 10.1111/cobi.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/13/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease-free insurance populations at isolated sites. Often a resident DFTD-affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch-effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease-free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May-June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost-effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease-free.
Collapse
Affiliation(s)
- Tracy M Rout
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Biodiversity and Conservation Science & School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher M Baker
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- CSIRO Ecosystem Sciences, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Stewart Huxtable
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, 134 Macquarie Street, Hobart, TAS 7000, Australia
| | - Brendan A Wintle
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Anderson DP, Gormley AM, Bosson M, Livingstone PG, Nugent G. Livestock as sentinels for an infectious disease in a sympatric or adjacent-living wildlife reservoir host. Prev Vet Med 2017; 148:106-114. [PMID: 29157368 DOI: 10.1016/j.prevetmed.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
Abstract
A central question to address in managing wildlife diseases is how much effort and resources are required to reduce infection prevalence to below a requisite threshold? This requires surveillance for infection in at least one species involved in the infection cycle, a process that is often expensive and time-consuming but one which could be enhanced using additional sources of readily-obtainable surveillance data. We demonstrate how surveillance data from ruminant livestock monitored for bovine tuberculosis (bTB) in New Zealand can be employed in spatially-explicit modelling to help predict the probability of freedom from Mycobacterium bovis infection in a sympatric wildlife reservoir species, the brushtail possum (Trichosurus vulpecula). We apply the model to a case study and compare resulting probabilities of freedom when utilizing (1) livestock data only, (2) wildlife data only, and (3) combined livestock-plus-wildlife surveillance data. Results indicated that the greatest probability of M. bovis eradication was achieved using wildlife monitoring data supplemented with livestock surveillance data. This combined approach lessened the time required for a confident (95% probability) declaration of regional eradication. However, the combined model was sensitive to the precision of the input parameters, and we describe ways to account for this. In a broad sense, this modelling approach is flexible in that any spatial arrangement of wildlife habitat and farms can be analysed, provided infection is readily detectable in both the wild and domestic animal(s) of interest. It is applicable to monitoring any communicable wildlife disease that affects regularly-tested livestock. The potential benefits to wildlife disease management include reduced surveillance costs and more rapid achievement of targeted reductions in disease prevalence.
Collapse
Affiliation(s)
- D P Anderson
- Manaaki Whenua Landcare Research, Wildlife Ecology and Management, P.O. Box 69040, Lincoln 7640, New Zealand.
| | - A M Gormley
- Manaaki Whenua Landcare Research, Wildlife Ecology and Management, P.O. Box 69040, Lincoln 7640, New Zealand
| | - M Bosson
- TBfree New Zealand, P.O. Box 10522, Hamilton 3241, New Zealand
| | - P G Livingstone
- TBfree New Zealand, P.O. Box 3412, Wellington 6140, New Zealand
| | - G Nugent
- Manaaki Whenua Landcare Research, Wildlife Ecology and Management, P.O. Box 69040, Lincoln 7640, New Zealand
| |
Collapse
|
10
|
Bio-economic optimisation of surveillance to confirm broadscale eradications of invasive pests and diseases. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1490-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yates GF, Price-Carter M, Bland K, Joyce MA, Khan F, Surrey M, de Lisle GW. Comparison of the BBL mycobacteria growth indicator tube, the BACTEC 12B, and solid media for the isolation of Mycobacterium bovis. J Vet Diagn Invest 2017; 29:508-512. [PMID: 28460600 DOI: 10.1177/1040638717697763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We compared different methods for their ability to isolate Mycobacterium bovis from tissue samples from animals with lesions resembling bovine tuberculosis. In the first trial, M. bovis was isolated from 86 of 200 tissue samples that were cultured using 2 liquid media, BACTEC 12B and BBL mycobacteria growth indicator tube (MGIT), and a solid medium, Middlebrook 7H11 supplemented with pyruvate (7H11P). M. bovis was isolated from 2 samples with MGIT but not BACTEC 12B. M. bovis was isolated from 9 samples with BACTEC but not MGIT; these 9 samples came from the North Canterbury/Marlborough region of New Zealand. The proportion of tissues from which M. bovis was isolated with BACTEC 12B or MGIT and the mean time for isolation was different for samples from the North Canterbury/Marlborough region but not the rest of New Zealand. In the second trial, M. bovis was isolated from 401 of 1,033 tissues that were cultured using MGIT, Middlebrook 7H9 broth, or solid 7H11P. The proportion of isolates of M. bovis and the mean time for their isolation with MGIT was different for the North Canterbury/Marlborough and the rest of New Zealand. The reason for this difference was not determined but may be related to the genotypes present in this region. Genotyping using variable number tandem repeats (VNTRs) of 197 isolates of M. bovis revealed that the 44 isolates from North Canterbury/Marlborough were represented by 2 closely related VNTR types that were not found in 153 isolates from the remainder of New Zealand.
Collapse
Affiliation(s)
- Gary F Yates
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Marian Price-Carter
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Kirstie Bland
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Maree A Joyce
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Farina Khan
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Melissa Surrey
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | - Geoffrey W de Lisle
- AgResearch Limited, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
12
|
Gormley AM, Anderson DP, Nugent G. Cost-based optimization of the stopping threshold for local disease surveillance during progressive eradication of tuberculosis from New Zealand wildlife. Transbound Emerg Dis 2017; 65:186-196. [PMID: 28391623 DOI: 10.1111/tbed.12647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/30/2022]
Abstract
Bovine tuberculosis (TB) is managed in New Zealand largely via population reduction of the major wildlife disease reservoir of Mycobacterium bovis, the introduced brushtail possum Trichosurus vulpecula. New Zealand aims to eradicate M. bovis infection from its livestock and wildlife within 40 years, as the culmination of progressive regional eradication programmes. Declarations of regional eradication are decided after extensive possum population control and post-control surveillance; hence, we developed a modelling framework, based on eco-epidemiological simulation data, to provide cost-evaluated options for deciding when to make these declarations. A decision-support framework evaluated potential costs of wildlife surveillance (and recontrol, if required) with respect to the calculated probability of successful eradication of M. bovis from wildlife. This enabled expected costs to be predicted in terms of stopping thresholds, allowing selection of optimal stopping rules based on minimizing costs. We identified factors that could influence optimal stopping values applied during regional eradication. Where vector/disease surveillance was inexpensive (for example, using low-cost detection devices or sentinel wildlife hosts) optimization involved setting a higher rather than lower stopping value, as it would be cheaper to minimize the risk of making a false declaration of eradication than to remedy any such failure. In addition, any cost of recontrol would largely depend on the time to rediscovery of residual M. bovis infection in wildlife, which would in turn be linked to the level of ongoing passive surveillance (with more rapid detection of re-emergent infection among wildlife in farmland situations than in remote forested regions). These two scenarios would favour different optimal stopping rules, as would the consideration of stakeholder confidence and socio-political issues, which are discussed. The framework presented here provides guidance to assess the economics underlying eradication of bovine TB from New Zealand farming; this eliminates reliance upon a pre-determined and uniform stopping rule for ceasing active management.
Collapse
Affiliation(s)
| | | | - G Nugent
- Landcare Research, Lincoln, New Zealand
| |
Collapse
|
13
|
A modelling framework for predicting the optimal balance between control and surveillance effort in the local eradication of tuberculosis in New Zealand wildlife. Prev Vet Med 2016; 125:10-8. [DOI: 10.1016/j.prevetmed.2016.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 12/01/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
|
14
|
Nugent G, Buddle BM, Knowles G. Epidemiology and control of Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand. N Z Vet J 2015; 63 Suppl 1:28-41. [PMID: 25290902 PMCID: PMC4566891 DOI: 10.1080/00480169.2014.963791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Abstract
The introduced Australian brushtail possum (Trichosurus vulpecula) is a maintenance host for bovine tuberculosis (TB) in New Zealand and plays a central role in the TB problem in this country. The TB-possum problem emerged in the late 1960s, and intensive lethal control of possums is now used to reduce densities to low levels over 8 million ha of the country. This review summarises what is currently known about the pathogenesis and epidemiology of TB in possums, and how the disease responds to possum control. TB in possums is a highly lethal disease, with most possums likely to die within 6 months of becoming infected. The mechanisms of transmission between possums remain unclear, but appear to require some form of close contact or proximity. At large geographic scales, TB prevalence in possum populations is usually low (1-5%), but local prevalence can sometimes reach 60%. Intensive, systematic and uniform population control has been highly effective in breaking the TB cycle in possum populations, and where that control has been sustained for many years the prevalence of TB is now zero or near zero. Although some uncertainties remain, local eradication of TB from possums appears to be straightforward, given that TB managers now have the ability to reduce possum numbers to near zero levels and to maintain them at those levels for extended periods where required. We conclude that, although far from complete, the current understanding of TB-possum epidemiology, and the current management strategies and tactics, are sufficient to achieve local, regional, and even national disease eradication from possums in New Zealand.
Collapse
Affiliation(s)
- G Nugent
- Wildlife Ecoepidemiology, Landcare Research, Lincoln, New Zealand
| | - BM Buddle
- Tuberculosis Research Laboratory AgResearch, Hopkirk Institute, Palmerston North, New Zealand
| | - G Knowles
- TB Management TBfree New Zealand, Alexandra9320, New Zealand
| |
Collapse
|
15
|
Livingstone PG, Hancox N, Nugent G, Mackereth G, Hutchings SA. Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock. N Z Vet J 2015; 63 Suppl 1:98-107. [PMID: 25651829 PMCID: PMC4566894 DOI: 10.1080/00480169.2015.1013581] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe the progressive development of New Zealand's national strategy for control of tuberculosis (TB) in its agricultural sector over the last four decades. The strategy is globally unique, reflecting the need for effective and co-ordinated management of TB in a wildlife maintenance host, the brushtail possum (Trichosurus vulpecula), in addition to controlling infection in cattle and farmed deer herds. Since the early 1990s, the strategy has been developed by the Animal Health Board (AHB), formed to empower the farming industry to take the leadership role in funding of TB control, policy development and administration. The AHB became the first non-government organisation to develop and gain acceptance by the funders (farming industry and government) of a National Pest Management Strategy (NPMS) under the Biosecurity Act 1993. A key outcome of the NPMS for TB control was the development and inclusion of very challenging objectives that provided direction for management, research and possum control. This paper describes the process whereby the NPMS was revised twice, following achievement of each successive set of strategy objectives within budget. Success was based on firstly, reorganisation of the AHB and its operational systems to achieve increased efficiency; secondly, improved efficiency through contracting possum and disease control, and thirdly research delivering effective and practical applications, while also providing a scientific basis for setting directions for future control strategies. The last revision of the NPMS was implemented in 2011, and included objectives to eradicate Mycobacterium bovis-infected wildlife populations over 2.5 million hectares by 2026. This ambitious objective was adopted only after extensive forecast modelling enabled stakeholders to identify and select the most cost-effective long-term solution for the management of M. bovis-infected possum populations. The accomplishment of New Zealand's TB control programme, in meeting successive sets of demanding NPMS objectives, has seen a 95% decrease in the number of infected cattle and deer herds since they peaked at 1,694 in 1994, and the eradication of TB from infected possum populations from 830,000 hectares. Provided the current level of funding continues, New Zealand is positioned to achieve national eradication of TB well in advance of the 40–50-year timeline forecast 3 years ago.
Collapse
Affiliation(s)
- P G Livingstone
- a TBfree New Zealand , PO Box 3412, Wellington 6140 , New Zealand
| | | | | | | | | |
Collapse
|
16
|
Barron MC, Tompkins DM, Ramsey DSL, Bosson MAJ. The role of multiple wildlife hosts in the persistence and spread of bovine tuberculosis in New Zealand. N Z Vet J 2015; 63 Suppl 1:68-76. [PMID: 25384267 PMCID: PMC4566902 DOI: 10.1080/00480169.2014.968229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To explore how the inclusion of multi-host dynamics affects the predicted prevalence of bovine tuberculosis (TB) in possums and other host species following the current best practice for control of TB in large difficult and remote areas, to identify which host species are responsible for changes in predicted prevalence, and whether TB can persist in possum-free host communities. METHODS Multi-host TB models were constructed, comprising three host species with density-dependent population growth, density-dependent disease transmission and susceptible and infected classes. Models were parameterised for two case studies of current concern in New Zealand, namely chronic TB persistence in a possum-deer-pig complex in extensive forest, and in a possum-pig-ferret complex in unforested semi-arid shrub and grasslands. Persistence of TB in the face of best practice possum control was evaluated from model simulations, and the contribution of different hosts to persistence of TB was assessed by removing each host species in turn from the simulations. A sensitivity test explored how different parameter values affected modelled persistence of TB. RESULTS The forest multi-host model-predicted amplification of TB prevalence due to the presence of pigs. The presence of pigs and/or deer did not jeopardise the success of best practice possum control in eradicating TB from the system, as pigs and deer are effectively end-hosts for TB. Sensitivity analyses indicated these interpretations were robust to uncertainty in model parameter values. The grassland system model predicted that the multi-host species complex could potentially lead to failure of eradication of TB under possum-only control, due to TB persisting in ferret and pig populations in the absence of possum hosts through reciprocal scavenging, resulting in spillback transmission to possums once their populations had started to recover from control. CONCLUSIONS With respect to management of TB, for modelled forest habitats, 15 years of effective possum control was predicted to eradicate TB from the possum-deer-pig host community, indicating the current focus on possum-only control is appropriate for such areas. For grassland model systems, TB was predicted to persist in the ferret-pig host complex in the absence of possums, potentially jeopardising the effectiveness of possum-only control programmes. However this outcome depended on the occurrence and rate of pigs acquiring TB from ferrets, which is unknown. Thus some estimation of this transmission parameter is required to enable managers to assess if multi-host disease dynamics are important for their TB control programmes.
Collapse
Affiliation(s)
- M C Barron
- a Wildlife Ecology and Management , Landcare Research , PO Box 69040, Lincoln 7640 , New Zealand
| | | | | | | |
Collapse
|
17
|
Nugent G, Gortazar C, Knowles G. The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N Z Vet J 2015; 63 Suppl 1:54-67. [PMID: 25295713 PMCID: PMC4566879 DOI: 10.1080/00480169.2014.963792] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In New Zealand, wild deer and feral pigs are assumed to be spillover hosts for Mycobacterium bovis, and so are not targeted in efforts aimed at locally eradicating bovine tuberculosis (TB) from possums (Trichosurus vulpecula), the main wildlife host. Here we review the epidemiology of TB in deer and pigs, and assess whether New Zealand's TB management programme could be undermined if these species sometimes achieve maintenance host status. In New Zealand, TB prevalences of up to 47% have been recorded in wild deer sympatric with tuberculous possums. Patterns of lesion distribution, age-specific prevalences and behavioural observations suggest that deer become infected mainly through exposure to dead or moribund possums. TB can progress rapidly in some deer (<10%), but generalised disease is uncommon in wild deer; conversely some infected animals can survive for many years. Deer-to-deer transmission of M. bovis is rare, but transmission from tuberculous deer carcasses to scavengers, including possums, is likely. That creates a small spillback risk that could persist for a decade after transmission of new infection to wild deer has been halted. Tuberculosis prevalence in New Zealand feral pigs can reach 100%. Infections in lymph nodes of the head and alimentary tract predominate, indicating that TB is mostly acquired through scavenging tuberculous carrion, particularly possums. Infection is usually well contained, and transmission between pigs is rare. Large reductions in local possum density result in gradual declines (over 10 years) in TB prevalence among sympatric wild deer, and faster declines in feral pigs. Elimination of TB from possums (and livestock) therefore results in eventual disappearance of TB from feral pigs and wild deer. However, the risk of spillback infection from deer to possums substantially extends the time needed to locally eradicate TB from all wildlife (compared to that which would be required to eradicate disease from possums alone), while dispersal or translocation of pigs (e.g. by hunters) creates a risk of long-distance spread of disease. The high rate at which pigs acquire M. bovis infection from dead possums makes them useful as sentinels for detecting TB in wildlife. It is unlikely that wild deer and feral pigs act as maintenance hosts anywhere in New Zealand, because unrestricted year-round hunting keeps densities low, with far less aggregation than on New Zealand farms. We conclude that active management of wild deer or feral pigs is not required for local TB eradication in New Zealand.
Collapse
Affiliation(s)
- G Nugent
- a Landcare Research , Lincoln 7640 , New Zealand
| | | | | |
Collapse
|
18
|
Byrom AE, Caley P, Paterson BM, Nugent G. Feral ferrets (Mustela furo) as hosts and sentinels of tuberculosis in New Zealand. N Z Vet J 2015; 63 Suppl 1:42-53. [PMID: 25495945 PMCID: PMC4699325 DOI: 10.1080/00480169.2014.981314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The control and eventual eradication of bovine tuberculosis (TB) poses major challenges in New Zealand, given the variety of wildlife species susceptible to TB, many of which are capable of onwards transmission of Mycobacterium bovis infection. Here we discuss the role of feral ferrets (Mustela furo), focussing on potential transmission or risk pathways that have implications for management of TB. Firstly inter-specific transmission to ferrets. Ferrets scavenge potentially infected wildlife, including other ferrets, thus prevalence of TB can be amplified through ferrets feeding on tuberculous carcasses, particularly brushtail possums (Trichosurus vulpecula). Secondly intra-specific transmission between ferrets. The rate of ferret-ferret transmission depends on population density, and in some places ferret densities exceed the estimated threshold for disease persistence. TB can therefore potentially be maintained independently of other sources of infection. Thirdly transmission from ferrets to other wildlife. These include the main wildlife maintenance host, brushtail possums, that will occasionally scavenge potentially tuberculous ferret carcasses. Fourthly transmission from ferrets to livestock. This is considered to occur occasionally, but the actual rate of transmission has never been measured. Fifthly geographical spread. M. bovis-infected ferrets can travel large distances and cause new outbreaks of TB at locations previously free of TB, which may have caused an expansion of TB-endemic areas.Ferrets play a complex role in the TB cycle in New Zealand; they are capable of contracting, amplifying and transmitting M. bovis infection, sometimes resulting in ferret populations with a high prevalence of TB. However, ferret population densities are usually too low to sustain infection independently, and transmission to other wildlife or livestock appears a rarer event than with possums. Nevertheless, management of ferrets remains a key part of the National Pest Management Strategy for TB. Control is prudent where M. bovis-infected ferret populations exist in high numbers, to reduce the onward transmission risk of any self-sustained infection to livestock. When ferret numbers are well below the theoretical disease maintenance threshold, ferret control is still sometimes warranted because of the animals’ ability to acquire infection when young and, through dispersal, transport it outside TB-endemic areas. Ferrets can also be used as disease sentinels for TB, especially in areas where alternative sentinel species are rare or expensive to survey, and when sampling of possums is not cost-effective.
Collapse
Affiliation(s)
- A E Byrom
- a Wildlife Ecology and Management Team , Landcare Research , Lincoln , New Zealand
| | | | | | | |
Collapse
|
19
|
Abstract
Tuberculosis (TB) due to Mycobacterium bovis infection was first identified in brushtail possums (Trichosurus vulpecula) in New Zealand in the late 1960s. Since the early 1970s, possums in New Zealand have been controlled as part of an ongoing strategy to manage the disease in livestock. The TB management authority (TBfree New Zealand) currently implements three strategic choices for disease-related possum control: firstly TB eradication in areas selected for eradication of the disease from livestock and wildlife, secondly Free Area Protection in areas in which possums are maintained at low densities, normally along a Vector Risk Area (VRA) boundary, and thirdly Infected Herd Suppression, which includes the remaining parts of VRA where possums are targeted to minimise the infection risk to livestock. Management is primarily through a range of lethal control options. The frequency and intensity of control is driven by a requirement to reduce populations to very low levels (usually to a trap-catch index below 2%), then to hold them at or below this level for 5–10 years to ensure disease eradication.Lethal possum control is implemented using aerial- and ground-based applications, under various regulatory and operational constraints. Extensive research has been undertaken aimed at improving the efficacy and efficiency of control. Aerial applications use sodium fluoroacetate (1080) bait for controlling possums over extensive and rugged areas of forest that are difficult to access by foot. Ground-based control uses a range of toxins (primarily, a potassium cyanide-based product) and traps. In the last 5 years there has been a shift from simple possum population control to the collection of spatial data on possum presence/absence and relative density, using simple possum detection devices using global positioning system-supported data collection tools, with recovery of possum carcasses for diagnostic necropsy. Such data provide information subsequently used in predictive epidemiological models to generate a probability of TB freedom.The strategies for managing TB in New Zealand wildlife now operate on four major principles: firstly a target threshold for possum population reduction is defined and set, secondly an objective methodology is applied for assessing whether target reductions have been achieved, thirdly effective control tools for achieving possum population reductions are used, and fourthly the necessary legislative support is in place to ensure compliance. TBfree New Zealand's possum control programme meets these requirements, providing an excellent example of an effective pest and disease control programme.
Collapse
Affiliation(s)
- B Warburton
- a Landcare Research , PO Box 69040, Lincoln , New Zealand
| | | |
Collapse
|