1
|
Neef A, Nath BK, Das T, Luque D, Forwood JK, Raidal SR, Das S. Recombinantly expressed virus-like particles (VLPs) of canine circovirus for development of an indirect ELISA. Vet Res Commun 2024; 48:1121-1133. [PMID: 38163840 DOI: 10.1007/s11259-023-10290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Canine circovirus (CanineCV) is an emerging pathogen in domestic dogs, detected in multiple countries in association with varying clinical and pathological presentations including diarrhoea, vasculitis, granulomatous inflammation, and respiratory signs. Understanding the pathology of CanineCV is confounded by the fact that it has been detected in asymptomatic dogs as well as in diseased dogs concurrently infected with known pathogens. Recombinantly expressed self-assembling Virus-like particles (VLPs) lack viral genomic material but imitate the capsid surface conformations of wild type virion, allowing arrays of biological applications including subunit vaccine development and immunodiagnostics. In this study, full length CanineCV capsid gene was expressed in Escherichia coli followed by two-step purification process to yield soluble capsid protein in high concentration. Transmission electron microscopy (TEM) confirmed the capsid antigen self-assembled into 17-20 nm VLPs in glutathione S-transferase (GST) buffer, later utilised to develop an indirect enzyme-linked immunosorbent assay (iELISA). The respective sensitivity and specificity of the proposed iELISA were 94.10% and 88.40% compared with those obtained from Western blot. The mean OD450 value for western blot positive samples was 1.22 (range 0.12-3.39) and negative samples was 0.21 (range 0.07-0.41). An optimal OD450 cut-off of 0.35 was determined by ROC curve analysis. Median inter-assay and intra-assay validation revealed that the iELISA test results were reproducible with coefficients of variation 7.70 (range 5.6-11.9) and 4.21 (range 1.2-7.4). Our results demonstrated that VLP-based iELISA is a highly sensitive method for serological diagnosis of CanineCV infections in dogs, suitable for large-scale epidemiological studies.
Collapse
Affiliation(s)
- Alison Neef
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Daniel Luque
- Electron Microscope Unit, Mark Wainwright Analytical Centre, School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jade K Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
2
|
Flies AS, Flies EJ, Fountain-Jones NM, Musgrove RE, Hamede RK, Philips A, Perrott MRF, Dunowska M. Wildlife nidoviruses: biology, epidemiology, and disease associations of selected nidoviruses of mammals and reptiles. mBio 2023; 14:e0071523. [PMID: 37439571 PMCID: PMC10470586 DOI: 10.1128/mbio.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Wildlife is the source of many emerging infectious diseases. Several viruses from the order Nidovirales have recently emerged in wildlife, sometimes with severe consequences for endangered species. The order Nidovirales is currently classified into eight suborders, three of which contain viruses of vertebrates. Vertebrate coronaviruses (suborder Cornidovirineae) have been extensively studied, yet the other major suborders have received less attention. The aim of this minireview was to summarize the key findings from the published literature on nidoviruses of vertebrate wildlife from two suborders: Arnidovirineae and Tornidovirineae. These viruses were identified either during investigations of disease outbreaks or through molecular surveys of wildlife viromes, and include pathogens of reptiles and mammals. The available data on key biological features, disease associations, and pathology are presented, in addition to data on the frequency of infections among various host populations, and putative routes of transmission. While nidoviruses discussed here appear to have a restricted in vivo host range, little is known about their natural life cycle. Observational field-based studies outside of the mortality events are needed to facilitate an understanding of the virus-host-environment interactions that lead to the outbreaks. Laboratory-based studies are needed to understand the pathogenesis of diseases caused by novel nidoviruses and their evolutionary histories. Barriers preventing research progress include limited funding and the unavailability of virus- and host-specific reagents. To reduce mortalities in wildlife and further population declines, proactive development of expertise, technologies, and networks should be developed. These steps would enable effective management of future outbreaks and support wildlife conservation.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Emily J. Flies
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Healthy Landscapes Research Group, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ruth E. Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo K. Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Annie Philips
- Natural Resources and Environment Tasmania, Hobart, Tasmania, Australia
| | | | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Yang DA, Laven RA. Performance of the StaphGold ELISA test in determining subclinical Staphylococcus aureus infections in dairy cows using a Gaussian mixture model. Vet Med Sci 2022; 8:1632-1639. [PMID: 35334160 PMCID: PMC9297801 DOI: 10.1002/vms3.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background A novel ELISA test has been developed to detect antigen‐specific IgG in early and late lactation cows in New Zealand. Objectives This study was to evaluate the discriminatory ability of the ELISA based on the detection of S. aureus‐specific IgG as a screening test. Methods The ELISA was used for the composite milk samples taken during routine herd testing in 2018–2019 milking season in New Zealand. In the absence of a gold standard test, the diagnostic specificity and sensitivity was estimated using a Gaussian mixture model. Results The ELISA test had a high accuracy (AUC = 0.98) to detect antigen‐specific IgG in early and late lactation cows with high somatic cell count due to either subsequent to or contemporaneous with the S. aureus invasion. Using an S/P ratio = 0.3 as the cut‐off value, the ELISA test has sensitivity of 0.9 and specificity of 0.95, while the sensitivity increased to 0.94 at a cost of a decreased specificity of 0.9 at a lower cut‐off value 0.26. Conclusions The integration of the ELISA test as a screening tool into specific control programs may be useful to reduce the spread of S. aureus infections, to aid with treatment decisions, and to establish a correct milking order.
Collapse
Affiliation(s)
- Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
4
|
Keeping continuous diagnostic data continuous: Application of Bayesian latent class models in veterinary research. Prev Vet Med 2022; 201:105596. [DOI: 10.1016/j.prevetmed.2022.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
5
|
Wang P, Yue C, Liu K, Lu D, Liu S, Yao S, Li X, Su X, Ren K, Chai Y, Qi J, Zhao Y, Lou Y, Sun Z, Gao GF, Liu WJ. Peptide Presentations of Marsupial MHC Class I Visualize Immune Features of Lower Mammals Paralleled with Bats. THE JOURNAL OF IMMUNOLOGY 2021; 207:2167-2178. [PMID: 34535575 DOI: 10.4049/jimmunol.2100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.
Collapse
Affiliation(s)
- Pengyan Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Dan Lu
- Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Sai Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Tolpinrud A, Firestone SM, Diaz-Méndez A, Wicker L, Lynch SE, Dunowska M, Devlin JM. Serological evidence for the presence of wobbly possum disease virus in Australia. PLoS One 2020; 15:e0237091. [PMID: 32750064 PMCID: PMC7402471 DOI: 10.1371/journal.pone.0237091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.
Collapse
Affiliation(s)
- Anita Tolpinrud
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria, Australia
| | - Simon M Firestone
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrés Diaz-Méndez
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Leanne Wicker
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Chang WS, Eden JS, Hartley WJ, Shi M, Rose K, Holmes EC. Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums. ONE HEALTH OUTLOOK 2019; 1:5. [PMID: 33829126 PMCID: PMC7990097 DOI: 10.1186/s42522-019-0006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Australian brushtail possums (Trichosurus vulpecula) are an introduced pest species in New Zealand, but native to Australia where they are protected for biodiversity conservation. Wobbly possum disease (WPD) is a fatal neurological disease of Australian brushtail possums described in New Zealand populations that has been associated with infection by the arterivirus (Arteriviridae) wobbly possum disease virus (WPDV-NZ). Clinically, WPD-infected possums present with chronic meningoencephalitis, choroiditis and multifocal neurological symptoms including ataxia, incoordination, and abnormal gait. METHODS We conducted a retrospective investigation to characterise WPD in native Australian brushtail possums, and used a bulk meta-transcriptomic approach (i.e. total RNA-sequencing) to investigate its potential viral aetiology. PCR assays were developed for case diagnosis and full genome recovery in the face of extensive genetic variation. RESULTS We identified genetically distinct lineages of arteriviruses from archival tissues of WPD-infected possums in Australia, termed wobbly possum disease virus AU1 and AU2. Phylogenetically, WPDV-AU1 and WPDV-AU2 shared only ~ 70% nucleotide similarity to each other and the WPDV-NZ strain, suggestive of a relatively ancient divergence. Notably, we also identified a novel and divergent hepacivirus (Flaviviridae) - the first in a marsupial - in both WPD-infected and uninfected possums, indicative of virus co-infection. CONCLUSIONS We have identified marsupial-specific lineages of arteriviruses in mainland Australia that are genetically distinct from that in New Zealand, in some cases co-infecting animals with a novel hepacivirus. Our study provides new insight into the hidden genetic diversity of arteriviruses, the capacity for virus co-infection, and highlights the utility of meta-transcriptomics for disease investigation in a One Health context.
Collapse
Affiliation(s)
- Wei-Shan Chang
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW Australia
| | - William J. Hartley
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
8
|
Giles J, Perrott M, Roe W, Shrestha K, Aberdein D, Morel P, Dunowska M. Viral RNA load and histological changes in tissues following experimental infection with an arterivirus of possums (wobbly possum disease virus). Virology 2018; 522:73-80. [PMID: 30014860 PMCID: PMC7126967 DOI: 10.1016/j.virol.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
Abstract
Tissues from Australian brushtail possums (Trichosurus vulpecula) that had been experimentally infected with wobbly possum disease (WPD) virus (WPDV) were examined to elucidate pathogenesis of WPDV infection. Mononuclear inflammatory cell infiltrates were present in livers, kidneys, salivary glands and brains of WPD-affected possums. Specific staining was detected by immunohistochemistry within macrophages in the livers and kidneys, and undefined cell types in the brains. The highest viral RNA load was found in macrophage-rich tissues. The detection of viral RNA in the salivary gland, serum, kidney, bladder and urine is compatible with transmission via close physical contact during encounters such as fighting or grooming, or by contact with an environment that has been contaminated with saliva or urine. Levels of viral RNA remained high in all tissues tested throughout the study, suggesting that on-going virus replication and evasion of the immune responses may be important in the pathogenesis of disease.
Collapse
Affiliation(s)
- Julia Giles
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Wendi Roe
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Kshitiz Shrestha
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Danielle Aberdein
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Patrick Morel
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand.
| |
Collapse
|