1
|
Yadalam PK, Kalaivani V, Fageeh HI, Ibraheem W, Al-Ahmari MM, Khan SS, Ahmed ZH, Abdulkarim HH, Baeshen HA, Balaji TM, Bhandi S, Raj AT, Patil S. Future Drug Targets in Periodontal Personalised Medicine-A Narrative Review. J Pers Med 2022; 12:371. [PMID: 35330371 PMCID: PMC8955099 DOI: 10.3390/jpm12030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal disease is an infection-driven inflammatory disease characterized by the destruction of tooth-supporting tissues. The establishment of chronic inflammation will result in progressive destruction of bone and soft tissue changes. Severe periodontitis can lead to tooth loss. The disease has complex pathogenesis with an interplay between genetic, environmental, and host factors and pathogens. Effective management consists of plaque control and non-surgical interventions, along with adjuvant strategies to control inflammation and disrupt the pathogenic subgingival biofilms. Recent studies have examined novel approaches for managing periodontal diseases such as modulating microbial signaling mechanisms, tissue engineering, and molecular targeting of host inflammatory substances. Mounting evidence suggests the need to integrate omics-based approaches with traditional therapy to address the disease. This article discusses the various evolving and future drug targets, including proteomics, gene therapeutics, vaccines, and nanotechnology in personalized periodontal medicine for the effective management of periodontal diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, India;
| | - V. Kalaivani
- Department of Periodontics, SRM Kattankulathur Dental College & Hospital, SRM Nagar, Chennai 603203, India;
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Wael Ibraheem
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Manea Musa. Al-Ahmari
- Department of Periodontics and Community Medical Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham H. Abdulkarim
- Advanced Periodontal and Dental Implant Care, Missouri School of Dentistry and Oral Health, A. T. Still University, St. Louis, MO 63104, USA;
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
2
|
Ali EMH, El-Telbany RFA, Abdel-Maksoud MS, Ammar UM, Mersal KI, Zaraei SO, El-Gamal MI, Choi SI, Lee KT, Kim HK, Lee KH, Oh CH. Design, synthesis, biological evaluation, and docking studies of novel (imidazol-5-yl)pyrimidine-based derivatives as dual BRAF V600E/p38α inhibitors. Eur J Med Chem 2021; 215:113277. [PMID: 33601311 DOI: 10.1016/j.ejmech.2021.113277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 μM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 μM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Rania Farag A El-Telbany
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Usama M Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, Scotland, United Kingdom
| | - Karim I Mersal
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Seyed-Omar Zaraei
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Se-In Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Republic of Korea
| | - Kwan Hyi Lee
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea.
| |
Collapse
|
3
|
Meurer SK, Weiskirchen R. Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:98. [PMID: 29483873 PMCID: PMC5816342 DOI: 10.3389/fphar.2018.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
We have identified a phenomenon occurring in the usage of proposed “specific” Mitogen-activated protein kinase (MAPK) inhibitors. We found that especially inhibitors of p38 potentiate the activation of other MAPKs in various cell types. This finding will have tremendous impact on the interpretation of all former studies using MAPK inhibitors.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies in cartilage repair. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:655-68. [PMID: 24846478 DOI: 10.1089/ten.teb.2014.0014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Ying Zhang
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
5
|
Singh AK, Pandey R, Gill K, Singh R, Saraya A, Chauhan SS, Yadav S, Pal S, Singh N, Dey S. p38β MAP kinase as a therapeutic target for pancreatic cancer. Chem Biol Drug Des 2012; 80:266-73. [PMID: 22515544 DOI: 10.1111/j.1747-0285.2012.01395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is very difficult to diagnose in its early stage. Molecular marker and imaging have not proven to be accurate modalities for screening of pancreatic cancer. This study aims to develop p38β as a protein marker for pancreatic cancer and to design peptide inhibitor against the same. The serum p38β level of pancreatic cancer (n = 35; 5.06 μg/mL) was twofold higher compared to that of the chronic pancreatitis (n = 10; 2.92 μg/mL) and matched normal control (n = 10; 2.86 μg/ml) (p < 0.0005). Peptide inhibitors were designed to inhibit the activity of p38β and the kinetic assay had shown the dissociation constant, (K(D)) to be 3.16 × 10(-8) M and IC(50), 25 nM by Surface Plasmon Resonance (SPR) and Enzyme-Linked Immunosorbent Assay (ELISA), respectively. The peptide inhibitor also significantly reduced viability and induced cytotoxicity in Human Pancreatic carcinoma epithelial-like cell line (PANC-1) cells.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ivanenkov YA, Balakin KV, Tkachenko SE. New approaches to the treatment of inflammatory disease : focus on small-molecule inhibitors of signal transduction pathways. Drugs R D 2009; 9:397-434. [PMID: 18989991 DOI: 10.2165/0126839-200809060-00005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This 'state-of-the-art' review specifically focuses on alternative signalling pathways deeply involved in acute and chronic inflammatory responses initiated by various pathological stimuli. The accumulated scientific knowledge has already revealed key biological targets, such as COX-2, and related pro-inflammatory mediators (cytokines and chemokines, interleukins [ILs], tumour necrosis factor [TNF]-alpha, migration inhibition factor [MIF], interferon [IFN]-gamma and matrix metalloproteinases [MMPs]) implicated in uncontrolled, destructive inflammatory reaction. A number of physiologically active agents are currently approved for market or are under active investigation in different clinical trials. However, recent findings have exposed the fatal adverse effects directly associated with drug therapy based on COX-2 inhibition. Given these possible harmful outcomes, a range of novel therapeutically relevant biological targets that include nuclear transcription factor (NF-kappaB), p38 mitogen-activated protein kinases (MAPK) and Janus protein tyrosine kinases and signal transducers and activators of transcription (JAK/STAT) signalling pathways has received growing attention. Here we discuss recent progress in the identification and development of novel, clinically approved or evaluated small-molecule regulators of these signalling cascades as promising anti-inflammatory drugs.
Collapse
|
7
|
Kammerer B, Scheible H, Albrecht W, Gleiter CH, Laufer S. Pharmacokinetics of ML3403 ({4-[5-(4-Fluorophenyl)-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl}-(1-phenylethyl)-amine), a 4-Pyridinylimidazole-Type p38 Mitogen-Activated Protein Kinase Inhibitor. Drug Metab Dispos 2007; 35:875-83. [PMID: 17344341 DOI: 10.1124/dmd.106.013409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) is a key mediator in cytokine-induced signaling events that are activated in response to a variety of extracellular stimuli such as stress factors, apoptosis, and proliferation. Therefore, the MAPK family plays an integral role in disease states including oncogenesis, autoimmune diseases, and inflammatory processes. Inhibition of these protein kinases represents an attractive strategy for therapeutic intervention. In particular, one class of p38 MAP kinase inhibitors, the pyridinyl imidazole derivatives, is intensely investigated by several industrial groups, but so far no studies concerning the metabolism of these structurally related substances seem to be available. The objective of our examinations was the preclinical characterization of ML3403, {4-[5-(4-fluorophenyl)-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl}-(1-phenylethyl)-amine, a potent inhibitor of p38 MAP kinase, comprising the basic pyridinyl imidazole structure. In human hepatic microsomal incubations, the sulfoxidation to ML3603 ({4-[5-(4-fluorophenyl)-2-methylsulfinyl-3H-imidazol-4-yl]-pyridin-2-yl}-(1-phenylethyl)-amine) and M-sulfone ({4-[5-(4-fluorophenyl)-2-methylsulfonyl-3H-imidazol-4-yl]-pyridin-2-yl}-(1-phenylethyl)-amine) was found to be the predominant metabolic transformation. In addition, oxidative removal of the phenylethyl moiety, pyridine N-oxidation, and hydroxylation reactions were observed. Incubations were carried out with hepatic microsomes from various species and with recombinant human cytochrome P450 isoenzymes, showing that CYP1A2, CYP2C19, CYP2D6, and CYP3A4 are the prominent enzymes in the metabolism of ML3403. Michaelis-Menten kinetics of ML3603 formation by these recombinant isoenzymes showed that CYP3A4 plays a pivotal role in the sulfoxidation reaction. In addition, pharmacokinetics of ML3403 were evaluated in male and female Wistar rats after oral gavage, showing a fast and high conversion to its active sulfoxide metabolite ML3603. A remarkable gender-specific difference in the systemic exposure to ML3403 and ML3603 was found in rats. No gender-specific difference was detected in incubations with human liver microsomes.
Collapse
Affiliation(s)
- Bernd Kammerer
- University Hospital Tübingen, Department of Clinical Pharmacology, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
8
|
Newton R, Holden N. Inhibitors of p38 mitogen-activated protein kinase: potential as anti-inflammatory agents in asthma? BioDrugs 2004; 17:113-29. [PMID: 12641490 DOI: 10.2165/00063030-200317020-00004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either beta(2)-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.
Collapse
Affiliation(s)
- Robert Newton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|