1
|
Hoeffner C, Worek F, Horn G, Amend N. Optimization of long-term incubation of precision-cut kidney slices. Toxicol Mech Methods 2024:1-31. [PMID: 39034673 DOI: 10.1080/15376516.2024.2382797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Precision-cut kidney slices (PCKS) provide a powerful model to close the gap between in vivo and in vitro research. Publications by various authors favor different incubation conditions, media and antibiotics, that have not yet been compared in a standardized manner. After preparation, rat-PCKS were incubated in a total of nine combinations of incubation media and antibiotics for 4 days. We found that a combination of DMEM/F-12 and gentamicin showed the highest levels of viability. Utilizing both qualitative and quantitative methods, we observed stable levels of cellular viability for ten days when incubated in the most suitable medium combination of DMEM and gentamicin. Additionally, a Calcein Acetoxymethyl/Ethidium Homodimer-1 based live/dead Staining, analysis of total protein content and lactate dehydrogenase (LDH) were explored to assess both short- and long-term tissue viability. PCKS showed a significant decrease in total protein content, leveling off at around 60% over the duration of 10 days. To be able to evaluate viability irrespective of decreases in total protein detected, we chose to utilize the alamarBlue Cell Viability Assay. Quantifying both intra- and extracellular activity of LDH, while using different concentrations of ethanol as a positive control, we explored enzyme content as a parameter for cell membrane damage and cytotoxicity in PCKS. Overall, we showed that PCKS are suitable for both short- and long-term observation by optimizing incubation parameters, with numerous possibilities for other assays and methods in future studies.
Collapse
Affiliation(s)
- C Hoeffner
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - G Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - N Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| |
Collapse
|
2
|
Zhu Y, Shi Q, Peng Q, Gao Y, Yang T, Cheng Y, Wang H, Luo Y, Huang A, He TC, Fan J. A simplified 3D liver microsphere tissue culture model for hepatic cell signaling and drug-induced hepatotoxicity studies. Int J Mol Med 2019; 44:1653-1666. [PMID: 31485603 PMCID: PMC6777685 DOI: 10.3892/ijmm.2019.4321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Although a number of experimental models have been developed for liver research, each has its own advantages and disadvantages. The present study attempted to develop a simple and effective 3‑dimensional mouse liver microsphere tissue culture (LMTC) model in vitro for the analysis of hepatic functions. Hepatic characteristics and potential applications of this model were compared with that of mouse model in vivo and mouse primary hepatocytes in vitro. Using freshly‑perfused mouse liver tissue passed through 80‑mesh sift strainer (sift80), it was demonstrated that under the optimal culture conditions, the sift80 microsphere tissue cultured in 2% bovine calf serum medium remained viable with marked proliferating cell nuclear antigen and anti‑Myc proto‑oncogene protein expression, exhibited normal hepatic functions including indocyanine green (ICG) uptake/release and periodic acid‑Schiff staining, and expressed hepatocyte‑specific genes for up to 2 weeks. The microsphere tissue was responsive to bone morphogenic protein 9 (BMP9) stimulation leading to upregulation of downstream targets of BMP9 signaling. Furthermore, 3 commonly‑used liver‑damaging drugs were indicated to effectively inhibit hepatic ICG uptake, and induce the expression of hepatotoxicity‑associated genes. Therefore, this simplified LMTC model may be a useful in vitro tissue culture model to investigate drug‑induced liver injury and metabolism, and hepatocyte‑based cell singling.
Collapse
Affiliation(s)
- Ying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yue Gao
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Yang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400037, P.R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
3
|
Fahy GM, Guan N, de Graaf IAM, Tan Y, Griffin L, Groothuis GMM. Cryopreservation of precision-cut tissue slices. Xenobiotica 2012; 43:113-32. [DOI: 10.3109/00498254.2012.728300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Glöckner R, Lieder A, Lupp A. Determination of CYP activity in precision-cut liver slices: whether to use intact slices or slice homogenate. Anal Bioanal Chem 2008; 392:1167-72. [DOI: 10.1007/s00216-008-2238-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
5
|
Vermeir M, Annaert P, Mamidi RNVS, Roymans D, Meuldermans W, Mannens G. Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 2005; 1:75-90. [PMID: 16922654 DOI: 10.1517/17425255.1.1.75] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell-based in vitro models are invaluable tools in elucidating the pharmacokinetic profile of a drug candidate during its drug discovery and development process. As biotransformation is one of the key determinants of a drug's disposition in the body, many in vitro models to study drug metabolism have been established, and others are still being developed and validated. This review is aimed at providing the reader with a concise overview of the characteristics and optimal application of established and emerging in vitro cell-based models to study human drug metabolism and induction of drug metabolising enzymes in the liver. The strengths and weaknesses of liver-derived models, such as primary hepatocytes, either freshly isolated or cryopreserved, and from adult or fetal donors, precision-cut liver slices, and cell lines, including immortalised cells, reporter cell lines, hepatocarcinoma-derived cell lines and recombinant cell lines, are discussed. Relevant cell culture configuration aspects as well as other models such as stem cell-derived hepatocyte-like cells and humanised animal models are also reviewed. The status of model development, their acceptance by health authorities and recommendations for the most appropriate use of the models are presented.
Collapse
Affiliation(s)
- Marc Vermeir
- Johnson & Johnson Pharmaceutical Research & Development, Preclinical Pharmacokinetics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Axelsson H, Granhall C, Floby E, Jaksch Y, Svedling M, Sohlenius-Sternbeck AK. Rates of metabolism of chlorzoxazone, dextromethorphan, 7-ethoxycoumarin, imipramine, quinidine, testosterone and verapamil by fresh and cryopreserved rat liver slices, and some comparisons with microsomes. Toxicol In Vitro 2003; 17:481-8. [PMID: 12849732 DOI: 10.1016/s0887-2333(03)00049-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study we have investigated the disappearance of chlorzoxazone, dextromethorphan, 7-ethoxycoumarin, imipramine, quinidine, testosterone and verapamil from the medium in which fresh and cryopreserved rat liver slices were incubated. These compounds are all substrates of major isoforms of cytochrome P450 expressed in the liver. The metabolism of five of these compounds in microsomes from rat liver was also examined. Determinations of the concentrations of the compounds were performed employing LC/MS. Intrinsic clearance values (CL(ints)) were calculated on the basis of the concentration-vs.-time curves. No significant differences in the CL(int) values obtained with fresh and cryopreserved rat liver slices were observed for any of the compounds. The highest CL(int) value estimated with liver slices was observed for testosterone and the lowest values were with chlorzoxazone and 7-ethoxycoumarin. The total CL(int) values for 7-ethoxycoumarin and imipramine, calculated using scaling factors, were similar for liver slices and microsomes. In the case of testosterone, this total CL(int) was approximately 3.7-fold lower, whereas for dextromethorphan and quinidine it was 2.5- and 8.5-fold higher, respectively, with liver slices than with microromes. In conclusion, the rate of metabolism of the seven compounds tested with rat liver slices was not affected by cryopreservation. This finding adds further support to the general conclusion that the major activities involved in drug metabolism are not affected by cryopreservation of rat liver slices.
Collapse
Affiliation(s)
- H Axelsson
- Research DMPK, AstraZeneca R&D Södertälje, S-151 85, Södertälje, Sweden
| | | | | | | | | | | |
Collapse
|