1
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
2
|
Yang H, Lu W, Sun X. Primary congenital glaucoma: We are always on the way. Taiwan J Ophthalmol 2024; 14:190-196. [PMID: 39027076 PMCID: PMC11253993 DOI: 10.4103/tjo.tjo-d-22-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 07/20/2024] Open
Abstract
Primary congenital glaucoma (PCG), a developmental glaucoma occurring due to angle anomaly, earns growing concerns among ophthalmologists for its vision-damaging attribute. The incidence of PCG varies among races and geographic regions and is mostly genetically associated. Theories have been posed in attempt to address the etiology of this congenital maldevelopment and in the meanwhile providing evidence for feasibility of PCG surgeries. In regard to the clinical aspects of this entity, both the clinical characteristics and general principals of management are introduced, with angle surgeries highlighted for clarifying details including their success rates, key points for a successful surgical intervention, postoperative management, and follow-up strategies. Taking patients' vision-associated quality of life into consideration, we stressed that further perceptual learning and low vision rehabilitation are momentous. However, much has yet to be elucidated in respect of the truly comprehensive pathogenesis underneath as well as means by which clinical outcomes of PCG can be further improved. We are now looking forward to innovative therapeutic approaches like gene therapy in specific genes in the future, with the hope of improving their life-long visual quality in those young patients.
Collapse
Affiliation(s)
- Hongfang Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wenhan Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mandal AK, Chakrabarti D, Gothwal VK. Approach to primary congenital glaucoma: A perspective. Taiwan J Ophthalmol 2023; 13:451-460. [PMID: 38249492 PMCID: PMC10798405 DOI: 10.4103/tjo.tjo-d-23-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/26/2023] [Indexed: 01/23/2024] Open
Abstract
Primary congenital glaucoma (PCG) occurs worldwide and has a broad range of ocular manifestations. It poses a therapeutic challenge to the ophthalmologist. A proper diagnostic evaluation under anesthesia is advisable for all children who do not cooperate for an office examination. Medical therapy only serves as a supportive role, and surgical intervention remains the principal therapeutic modality. Angle incision surgery such as goniotomy or trabeculotomy ab externo is the preferred choice of surgery in the Caucasian population. Primary combined trabeculotomy-trabeculectomy with or without antifibrotic therapy is the preferred choice in certain regions such as India and the Middle East where the disease usually presents with severe forms of corneal edema along with megalocornea. In refractory cases, trabeculectomy with antifibrotic therapy or glaucoma drainage devices are available options in the armamentarium. Cycloablative procedures should be reserved for eyes with poor visual potential. Myopia is common among children with PCG, and appropriate optical refractive correction in the form of glasses or contact lenses should be provided. Amblyopia therapy should be instituted to ensure overall visual development in the early developmental years. Low-vision rehabilitation services should be provided to children with vision impairment. Long-term follow-up is mandatory and carers of children with PCG should be counseled and educated about this need. Regardless of the visual outcomes, clinicians should emphasize the need for education of these children during the clinic visit. The overall goal of the management should be to improve the overall quality of life of the children with PCG and their carers.
Collapse
Affiliation(s)
- Anil Kumar Mandal
- Jasti V Ramanamma Children’s Eye Care Centre, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- VST Centre for Glaucoma Care, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Vijaya K. Gothwal
- Meera and L B Deshpande Centre for Sight Enhancement, Institute for Vision Rehabilitation, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Brien Holden Centre for Eye Research–Patient Reported Outcomes Unit, L V Prasad Eye Institute, Hyderabad, Telangana, India
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Sun X, Yang H, Lu W. Primary congenital glaucoma: We are always on the way. Taiwan J Ophthalmol 2022. [DOI: 10.4103/2211-5056.363178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Song N, Leng L, Yang XJ, Zhang YQ, Tang C, Chen WS, Zhu W, Yang X. Compound heterozygous mutations in CYP1B1 gene leads to severe primary congenital glaucoma phenotype. Int J Ophthalmol 2019; 12:909-914. [PMID: 31236345 DOI: 10.18240/ijo.2019.06.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
AIM To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma (PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features. METHODS The DNA from the peripheral blood of 13 congenital glaucoma patients and 50 ethnically matched healthy controls from the affiliated hospital of Qingdao University were extracted. The coding region of the CYP1B1 gene was amplified by PCR and direct DNA sequencing was performed. Disease causing-variants were analyzed by comparing the sequences and the structures of wild type and mutant CYP1B1 proteins by PyMOL software. RESULTS Two missense mutations, including A330F caused by c.988G>T&c.989C>T, and R390H caused by c.1169G>A, were identified in one of the 13 PCG patients analyzed in our study. A330F mutation was observed to be novel in the Chinese Han population, which dramatically altered the protein structure of CYP1B1 gene, including the changes in the ligand-binding pocket. Furthermore, R390H mutation caused the changes in heme-protein binding site of this gene. In addition, the clinical phenotype displayed by PCG patient with these mutations was more pronounced than other PCG patients without these mutations. Multiple surgeries and combined drug treatment were not effective in reducing the elevated intraocular pressure in this patient. CONCLUSION A novel A330F mutation is identified in the CYP1B1 gene of Chinese PCG patient. Moreover, in combination with other mutation R390H, this PCG patient shows significant difference in the CYP1B1 protein structure, which may specifically contribute to severe glaucomatous phenotype.
Collapse
Affiliation(s)
- Na Song
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Lin Leng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xue-Jiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yu-Qing Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chun Tang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Wen-Shi Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, Shandong Province, China
| | - Xian Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
6
|
Bioinformatics analysis of CYP1B1 mutation hotspots in Chinese primary congenital glaucoma patients. Biosci Rep 2018; 38:BSR20180056. [PMID: 29903728 PMCID: PMC6435531 DOI: 10.1042/bsr20180056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Primary congenital glaucoma (PCG) is an inherited blinding eye disease. The CYP1B1 gene was identified as a causal gene for PCG, and many mutations have been found, but no studies have focussed on the molecular epidemiology of CYP1B1 in Chinese populations. We aimed to explore the CYP1B1 mutation hotspots in Chinese PCG patients and the possible impact of these mutations on the protein structure and function. First, we performed a meta-analysis on seven datasets of Chinese populations and found L107V and R390H to be the most common CYP1B1 mutations with allele frequencies of 3.19% and 3.09%, respectively. Then, a series of bioinformatics tools were applied to determine the sequence conservative properties, model the 3D structures, and study the dynamics changes. L107 and R390 are highly conserved residues in close proximity to the hemoglobin-binding region and the active site cavity (ASC), respectively. The mutations changed the distribution of hydrogen bonds and the local electrostatic potential. Long-term molecular dynamics (MD) simulations demonstrated the destabilization of the mutant proteins, especially at the ASC, whose solvent-accessible surface areas (SASAs) were significantly decreased. Compared with the wild-type (WT) protein, the overall structures of the mutants are associated with subtle but significant changes, and the ASC seems to adopt such structures that are not able to perform the WT-like functionality. Therefore, L107V and R390H might be the most important pathogenic mutations in Chinese PCG patients.
Collapse
|
7
|
Zhao Y, Chen J, Yu X, Xu J, Sun X, Hong J. Age-Related Changes in Human Schlemm's Canal: An in Vivo Optical Coherence Tomography-Based Study. Front Physiol 2018; 9:630. [PMID: 29922169 PMCID: PMC5996748 DOI: 10.3389/fphys.2018.00630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate age-related changes in human Schlemm’s canal (SC) using spectral-domain optical coherence tomography (SD-OCT). Methods: A total of 125 normal eyes were imaged using SD-OCT nasally and temporally. The age-related variations of SC sagittal diameter and cross-sectional area (CSA) from four age groups [A (16–20 years), B (21–40 years), C (41–60 years), and D (61–80 years)] were analyzed with Spearman correlation. Results: The positive detection rates of SC showed a significantly downward trend with age. The mean CSA was 13,296 ± 1,897 μm2 nasally and 14,552 ± 2,589 μm2 temporally. The mean CSA was significantly larger in the temporal than in the nasal region (P < 0.05). Nasal CSA values varied among the four age groups (P = 0.004). Conclusion: Our study found for the first time that SC in vivo exhibits a morphological variant with age in healthy humans. Clinicians may need to consider this phenomenon when performing examinations targeting SC for glaucoma patients.
Collapse
Affiliation(s)
- Yujin Zhao
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaobo Yu
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Myopia, National Health Commission, Beijing, China.,Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
Daliri K, Ljubimov AV, Hekmatimoghaddam S. Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now? Int J Stem Cells 2017; 10:119-128. [PMID: 28844129 PMCID: PMC5741193 DOI: 10.15283/ijsc17029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is the second most common cause of blindness, affecting 70∼80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.
Collapse
Affiliation(s)
- Karim Daliri
- Neurogenetic Ward, Comprehensive Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Visiting Scientist at Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Alexander V Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seyedhossein Hekmatimoghaddam
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Dong J, Zhang Q, Cui Q, Huang G, Pan X, Li S. Flavonoids and Naphthoflavonoids: Wider Roles in the Modulation of Cytochrome P450 Family 1 Enzymes. ChemMedChem 2016; 11:2102-2118. [DOI: 10.1002/cmdc.201600316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyun Dong
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Qijing Zhang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Qing Cui
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Guang Huang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Xiaoyan Pan
- School of Pharmacy; Xi'an Jiaotong University; Xi'an Shaanxi Province P.R. China
| | - Shaoshun Li
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| |
Collapse
|
10
|
Wiggs JL. Glaucoma Genes and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:315-42. [PMID: 26310163 DOI: 10.1016/bs.pmbts.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.
Collapse
Affiliation(s)
- Janey L Wiggs
- Harvard Medical School, and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Philips S, Zhou J, Li Z, Skaar TC, Li L. A translational bioinformatic approach in identifying and validating an interaction between Vitamin A and CYP19A1. BMC Genomics 2015; 16 Suppl 7:S17. [PMID: 26100049 PMCID: PMC4474421 DOI: 10.1186/1471-2164-16-s7-s17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION One major challenge in personalized medicine research is to identify the environmental factors that can alter drug response, and to investigate their molecular mechanisms. These environmental factors include co-medications, food, and nutrition or dietary supplements. The increasing use of dietary supplements and their potential interactions with cytochrome P450 (CYP450) enzymes is a highly significant personalized medicine research domain, because most of the drugs on the market are metabolized through CYP450 enzymes. METHODS Initial bioinformatics analysis revealed a number of regulators of CYP450 enzymes from a human liver bank gene expression quantitative loci data set. Then, a compound-gene network was constructed from the curated literature data. This network consisted of compounds that interact with either CYPs and/or their regulators that influence either their gene expression or activity. We further evaluated this finding in three different cell lines: JEG3, HeLa, and LNCaP cells. RESULTS From a total of 868 interactions we were able to identify an interesting interaction between retinoic acid (i.e. Vitamin A) and the aromatase gene (i.e. CYP19A1). Our experimental results showed that retinoic acid at physiological concentration significantly influenced CYP19A1 gene expressions. CONCLUSIONS These results suggest that the presence of retinoic acid may alter the efficacy of agents used to suppress aromatase expression.
Collapse
|
12
|
de Melo MB, Mandal AK, Tavares IM, Ali MH, Kabra M, de Vasconcellos JPC, Senthil S, Sallum JMF, Kaur I, Betinjane AJ, Moura CR, Paula JS, Costa KA, Sarfarazi M, Paolera MD, Finzi S, Ferraz VEF, Costa VP, Belfort R, Chakrabarti S. Genotype-Phenotype Correlations in CYP1B1-Associated Primary Congenital Glaucoma Patients Representing Two Large Cohorts from India and Brazil. PLoS One 2015; 10:e0127147. [PMID: 25978063 PMCID: PMC4433271 DOI: 10.1371/journal.pone.0127147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Primary congenital glaucoma (PCG), occurs due to the developmental defects in the trabecular meshwork and anterior chamber angle in children. PCG exhibits genetic heterogeneity and the CYP1B1 gene has been widely implicated worldwide. Despite the diverse mutation spectra, the clinical implications of these mutations are yet unclear. The present study attempted to delineate the clinical profile of PCG in the background of CYP1B1 mutations from a large cohort of 901 subjects from India (n=601) and Brazil (n=300). METHODS Genotype-phenotype correlations was undertaken on clinically well characterized PCG cases from India (n=301) and Brazil (n=150) to assess the contributions of CYP1B1 mutation on a set of demographic and clinical parameters. The demographic (gender, and history of consanguinity) and quantitative clinical (presenting intraocular pressure [IOP] and corneal diameter [CD]) parameters were considered as binary and continuous variables, respectively, for PCG patients in the background of the overall mutation spectra and also with respect to the prevalent mutations in India (R368H) and Brazil (4340delG). All these variables were fitted in a multivariate logistic regression model using the Akaike Information Criterion (AIC) to estimate the adjusted odds ratio (OR) using the R software (version 2.14.1). RESULTS The overall mutation spectrum were similar across the Indian and Brazilian PCG cases, despite significantly higher number of homozygous mutations in the former (p=0.024) and compound heterozygous mutations in the later (p=0.012). A wide allelic heterogeneity was observed and only 6 mutations were infrequently shared between these two populations. The adjusted ORs for the binary (demographic) and continuous (clinical) variables did not indicate any susceptibility to the observed mutations (p>0.05). CONCLUSIONS The present study demonstrated a lack of genotype-phenotype correlation of the demographic and clinical traits to CYP1B1 mutations in PCG at presentation. However, the susceptibility of these mutations to the long-term progression of these traits are yet to be deciphered.
Collapse
Affiliation(s)
- Mônica Barbosa de Melo
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anil K. Mandal
- Jasti V Ramanamma Childrens Eye Care Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Ivan M. Tavares
- Department of Ophthalmology, Federal University of São Paulo, SP, Brazil
| | - Mohammed Hasnat Ali
- Centre for Clinical Epidemiology and Biostatistics, L.V. Prasad Eye Institute, Hyderabad, India
| | - Meha Kabra
- Kallam Anji Reddy Molecular Genetics Laboratory, L.V. Prasad Eye Institute, Hyderabad, India
| | | | - Sirisha Senthil
- Jasti V Ramanamma Childrens Eye Care Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | | | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics Laboratory, L.V. Prasad Eye Institute, Hyderabad, India
| | - Alberto J. Betinjane
- Department of Ophthalmology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Jayter S. Paula
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karita A. Costa
- Department of Ophthalmology, Federal University of São Paulo, SP, Brazil
| | - Mansoor Sarfarazi
- Molecular Ophthalmic Genetics Laboratory, Surgical Research Center, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Mauricio Della Paolera
- Department of Ophthalmology, Irmandade da Santa Casa de Misericordia de São Paulo, School of Medical Sciences, São Paulo, SP, Brazil
| | - Simone Finzi
- Department of Ophthalmology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Victor E. F. Ferraz
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vital P. Costa
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, SP, Brazil
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics Laboratory, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
13
|
|
14
|
Abstract
The characterization of genes responsible for glaucoma is the critical first step toward the development of gene-based diagnostic and screening tests, which could identify individuals at risk for disease before irreversible optic nerve damage occurs. Early-onset forms of glaucoma affecting children and young adults are typically inherited as Mendelian autosomal dominant or recessive traits whereas glaucoma affecting older adults has complex inheritance. In this report, we present a comprehensive overview of the genes and genomic regions contributing to inherited glaucoma.
Collapse
Affiliation(s)
- Ryan Wang
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| |
Collapse
|
15
|
Nishida CR, Everett S, Ortiz de Montellano PR. Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol 2013; 84:451-8. [PMID: 23821647 PMCID: PMC3876821 DOI: 10.1124/mol.113.087700] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (P450)-catalyzed oxidation of the aromatic ring of estradiol can result in 2- or 4-hydroxylation. Which of these products is formed is biologically important, as the 4-hydroxylated metabolite is carcinogenic, whereas the 2-hydroxylated metabolite is not. Most human P450 enzymes, including CYP1A1 and CYP1A2, exhibit a high preference for estradiol 2-hydroxylation, but human CYP1B1 greatly favors 4-hydroxylation. Here we show that heterologous expression of the human, monkey, dog, rat, and mouse CYP1B1 enzymes yields active proteins that differ in their estradiol hydroxylation specificity. The monkey and dog orthologs, like the human enzyme, preferentially catalyze 4-hydroxylation, but the rat and mouse enzymes favor 2-hydroxylation. Analysis of the CYP1B1 sequences in light of these findings suggested that one residue, Val395 in human CYP1B1, could account for the differential hydroxylation specificities. In fact, mutation of this valine in human CYP1B1 to the leucine present in the rat enzyme produces a human enzyme that has the 2-hydroxylation specificity of the rat enzyme. The converse is true when the leucine in the rat enzyme is mutated to the human valine. The role of CYP1B1 in estradiol carcinogenicity thus depends on the identity of this single amino acid residue.
Collapse
Affiliation(s)
- Clinton R Nishida
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
16
|
Su CC, Liu YF, Li SY, Yang JJ, Yen YC. Mutations in the CYP1B1 gene may contribute to juvenile-onset open-angle glaucoma. Eye (Lond) 2012; 26:1369-77. [PMID: 22878448 DOI: 10.1038/eye.2012.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Glaucoma is one of the leading causes of blindness in the world. Juvenile-onset open-angle is a subtype of glaucoma. In this context, we investigate the possible mutations in the promoter and coding regions of the CYP1B1 gene among patients suffering juvenile-onset open-angle glaucoma (JOAG). METHODS The CYP1B1 gene was analysed for mutations in 61 unrelated Taiwanese probands with JOAG and in 100 healthy control subjects. Genomic DNA was extracted from peripheral blood leukocytes and then subjected to PCR. The amplified products were screened for base mutations by autosequence. Next, data from the two groups were compared using the χ(2) test. Additionally, three-dimensional (3D) modelling of the human wild-type and p.R390H mutation was performed using SWISS-MODEL, an automated homology modelling program. Finally, the figure was prepared for the modelled structures by using the Accelrys ViewerLite 5.0 program. RESULTS Analysis results indicated two CYP1B1 mutations and five polymorphisms. The prevalence of CYP1B1 gene mutations in this study was 4.92% (3/61). The mutations included a missense mutation (p.Arg390His; 2/3) and a mutation in the 5'-untranslated region (c.1-313A>C; 1/3). Moreover, computer-assisted modelling revealed that this p.R390H mutation affects the intra-molecular interaction in the hydrogen-bonding interaction with Glu387 and Asn428, thus altering significantly the efficiency of the haem-binding and proper folding of the molecule. CONCLUSIONS As a result, the p.Arg390His mutation might affect the protein structure and, ultimately, the normal function of CYP1B1. Therefore, we suggest that the c.1169G>A (p.Arg390His) mutation of CYP1B1 may be a risk factor for the development of JOAG.
Collapse
Affiliation(s)
- C-C Su
- Tian-Sheng Memorial Hospital, Tong Kang, Pin-Tong, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Overview of Cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res 2011; 93:572-9. [DOI: 10.1016/j.exer.2011.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/10/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022]
|
18
|
Wang A, Savas U, Stout CD, Johnson EF. Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 2011; 286:5736-43. [PMID: 21147782 PMCID: PMC3037686 DOI: 10.1074/jbc.m110.204420] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Indexed: 01/27/2023] Open
Abstract
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe(231) in 1B1 and Phe(226) in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B'-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.
Collapse
Affiliation(s)
- An Wang
- From the Departments of Molecular and Experimental Medicine and
| | - Uzen Savas
- From the Departments of Molecular and Experimental Medicine and
| | - C. David Stout
- Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F. Johnson
- From the Departments of Molecular and Experimental Medicine and
| |
Collapse
|
19
|
Beck AD. Primary Congenital Glaucoma in the Developing World. Ophthalmology 2011; 118:229-30. [DOI: 10.1016/j.ophtha.2010.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022] Open
|
20
|
|