1
|
Koloskoff K, Benito S, Chambon L, Dayan F, Marquet P, Jacqz-Aigrain E, Woillard JB. Limited sampling strategy and population pharmacokinetic model of mycophenolic acid in pediatric patients with systemic lupus erythematosus: application of a double gamma absorption model with SAEM algorithm. Eur J Clin Pharmacol 2024; 80:83-92. [PMID: 37897528 DOI: 10.1007/s00228-023-03587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is widely used in the treatment of systemic lupus erythematosus (SLE). It has been shown that its therapeutic drug monitoring based on the area under the curve (AUC) improves treatment efficacy. MPA exhibits a complex bimodal absorption, and a double gamma distribution model has been already proposed in the past to accurately describe this phenomenon. These previous population pharmacokinetics models (POPPK) have been developed using iterative two stage Bayesian (IT2B) or non-parametric adaptive grid (NPAG) methods. However, non-linear mixed effect (NLME) approaches based on stochastic approximation expectation-maximization (SAEM) algorithms have never been published so far for this particular model. The objectives of this study were (i) to implement the double absorption gamma model in Monolix, (ii) to compare different absorption models to describe the pharmacokinetics of MMF, and (iii) to develop a limited sampling strategy (LSS) to estimate AUC in pediatric SLE patients. MATERIAL AND METHODS A data splitting of full pharmacokinetic profiles sampled in 67 children extracted either from the expert system ISBA (n = 34) or the hospital Saint Louis (n = 33) was performed into train (75%) and test (25%) sets. A POPPK was developed for MPA in the train set using a NLME and the SAEM algorithm and different absorption models were implemented and compared (first order, transit, or simple and double gamma). The best limited sampling strategy was then determined in the test set using a maximum-a-posteriori Bayesian method to estimate individual PK parameters and AUC based on three blood samples compared to the reference AUC calculated using the trapezoidal rule applied on all samples and performances were assessed in the test set. RESULTS Mean patient age and dose was 13 years old (5-18) and 18.1 mg/kg (7.9-47.6), respectively. MPA concentrations (764) from 107 occasions were included in the analysis. A double gamma absorption with a first-order elimination from the central compartment best fitted the data. The optimal LSS with samples at 30 min, 2 h, and 3 h post-dose exhibited good performances in the test set (mean bias - 0.32% and RMSE 21.0%). CONCLUSION The POPPK developed in this study adequately estimated the MPA AUC in pediatric patients with SLE based on three samples. The double absorption gamma model developed with the SAEM algorithm showed very accurate fit and reduced computation time.
Collapse
Affiliation(s)
- Kévin Koloskoff
- INSERM, University of Limoges, CHU Limoges, P&T, U1248, Limoges, France
- EXACTCURE, Nice, France
| | | | | | | | - Pierre Marquet
- INSERM, University of Limoges, CHU Limoges, P&T, U1248, Limoges, France
| | - Evelyne Jacqz-Aigrain
- Department of Pharmacology and Pharmacogenetics, Université Paris Cité, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
2
|
Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol 2022; 17:1369-1406. [PMID: 35000505 DOI: 10.1080/17425255.2021.2027906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mycophenolic acid (MPA) is a widely used immunosuppressant in transplantation and autoimmune disease. Highly variable pharmacokinetics have been observed with MPA, but the exact mechanisms remain largely unknown. AREAS COVERED The current review provided a critical, comprehensive update of recently published population pharmacokinetic/dynamic models of MPA (n=16 papers identified from PubMed and Embase, inclusive from January 2017 to August 2021), with specific emphases on the intrinsic and extrinsic factors influencing the pharmacology of MPA. The significance of the identified covariates, potential mechanisms, and comparisons to historical literature have been provided. EXPERT OPINION While select covariates affecting the population pharmacokinetics of MPA are consistently observed and mechanistically supported, some variables have not been regularly reported and/or lacked mechanistic explanation. Very few pharmacodynamic models were available, pointing to the need to extrapolate pharmacokinetic findings. Ideal models of MPA should consist of: i) utilizing optimal sampling points to allow the characterizations of absorption, re-absorption, and elimination phases; ii) characterizing unbound/total MPA, MPA metabolites, plasma/urinary concentrations, and genetic polymorphisms to facilitate mechanistic interpretations; and iii) incorporating actual outcomes and pharmacodynamic data to establish clinical relevance. We anticipate the field will continue to expand in the next 5 to 10 years.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Vrunda Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Chen W, Ruan Z, Chen J, Yang D, Shao R, Lou H, Jiang B. On the population pharmacokinetics and the enterohepatic recirculation of hyzetimibe and its main metabolite in Chinese healthy subjects. Br J Clin Pharmacol 2021; 88:3153-3161. [PMID: 34931372 DOI: 10.1111/bcp.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUNDS Hyzetimibe (HS-25), a new drug approved for hypercholesterolemia, exhibits obvious enterohepatic recirculation (EHC) after oral administration. Up to now, little is known about the kinetics of HS-25. Therefore, we performed this population pharmacokinetic (PopPK) analysis aiming to describe the PK behavior of HS-25 and its main metabolite (M1), and to identify significant covariates contributing to the variability. METHODS The plasma concentration data used for modeling were obtained from an open-label, single-dose, randomized, two-period crossover bioequivalence study. PopPK modeling was performed with NONMEM 7.4.1 using nonlinear mixed effect modeling approach. Goodness of fit plots, bootstrap and visual predictive check were used for model internal validation. Data from another study was used for external validation. RESULTS Data from 16 male and 8 female subjects were used in the PopPK analysis. HS-25 and M1 concentrations in the modeling cohort were well described by a one-compartment model incorporating first-pass metabolism and a gallbladder compartment, accounting for the EHC process. The release kinetic of gall was mimicked by a first-order constant plus a switch on/off effect. Body weight was identified as a significant covariate effecting on the clearance and apparent distribution volume of HS-25, as well as kmg , the transfer rate from metabolite compartment to gallbladder compartment. Internal and external validation demonstrated an acceptable predictive ability of the final model. CONCLUSIONS We present the first PopPK model describing HS-25 and M1 concentrations simultaneously, with the EHC process considered. The modeling and simulation results could provide reference for the clinical use of HS-25.
Collapse
Affiliation(s)
- Wenjun Chen
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zourong Ruan
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinliang Chen
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Yang
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Shao
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Honggang Lou
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jiang
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Wang X, Wu Y, Huang J, Shan S, Mai M, Zhu J, Yang M, Shang D, Wu Z, Lan J, Zhong S, Wu M. Estimation of Mycophenolic Acid Exposure in Heart Transplant Recipients by Population Pharmacokinetic and Limited Sampling Strategies. Front Pharmacol 2021; 12:748609. [PMID: 34867352 PMCID: PMC8640522 DOI: 10.3389/fphar.2021.748609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study is i) to establish a strategy to estimate the area under the curve of the dosing interval (AUC0-12h) of mycophenolic acid (MPA) in the heart transplant recipients and ii) to find the covariates that significantly affect the pharmacokinetics of MPA exposure. Methods: This single-center, prospective, open-label, observational study was conducted in 91 adult heart transplant recipients orally taking mycophenolate mofetil dispersible tablets. Samples collected intensively and sparsely were analyzed by the enzyme-multiplied immunoassay technique, and all the data were used in PPK modeling. Potential covariates were tested stepwise. The goodness-of-fit plots, the normalized prediction distribution error, and prediction-corrected visual predictive check were used for model evaluation. Optimal sampling times by ED-optimal strategy and multilinear regression (MLR) were analyzed based on the simulated data by the final PPK model. Moreover, using intensive data from 14 patients, the accuracy of AUC0-12h estimation was evaluated by Passing-Bablok regression analysis and Bland-Alman plots for both the PPK model and MLR equation. Results: A two-compartment model with first-order absorption and elimination with a lag time was chosen as the structure model. Co-medication of proton pump inhibitors (PPIs), estimated glomerular filtration rate (eGFR), and albumin (ALB) were found to significantly affect bioavailability (F), clearance of central compartment (CL/F), and the distribution volume of the central compartment (V2/F), respectively. Co-medication of PPIs decreased F by 27.6%. When eGFR decreased by 30 ml/min/1.73 m2, CL/F decreased by 23.7%. However, the impact of ALB on V2/F was limited to MPA exposure. The final model showed an adequate fitness of the data. The optimal sampling design was pre-dose and 1 and 4 h post-dose for pharmacokinetic estimation. The best-fit linear equation was finally established as follows: AUC0-12h = 3.539 × C0 + 0.288 × C0.5 + 1.349 × C1 + 6.773 × C4.5. Conclusion: A PPK model was established with three covariates in heart transplant patients. Co-medication of PPIs and eGFR had a remarkable impact on AUC0-12h of MPA. A linear equation was also concluded with four time points as an alternative way to estimate AUC0-12h for MPA.
Collapse
Affiliation(s)
- Xipei Wang
- Research Center of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yijin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinsong Huang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Songgui Shan
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingjie Mai
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiade Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jinhua Lan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Min Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Cystic fibrosis foundation consensus statements for the care of cystic fibrosis lung transplant recipients. J Heart Lung Transplant 2021; 40:539-556. [PMID: 34103223 DOI: 10.1016/j.healun.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is the indication for transplantation in approximately 15% of recipients worldwide, and Cystic Fibrosis Lung Transplant Recipients (CFLTRs) have excellent long-term outcomes. Yet, CFLTRs have unique comorbidities that require specialized care. The objective of this document is to provide recommendations to CF and lung transplant clinicians for the management of perioperative and underlying comorbidities of CFLTRs and the impact of transplantation on these comorbidities. The Cystic Fibrosis Foundation (CFF) organized a multidisciplinary committee to develop CF Lung Transplant Clinical Care Recommendations. Three workgroups were formed to develop focused questions. Following a literature search, consensus recommendations were developed by the committee members based on literature review, committee experience and iterative revisions, and in response to public comment. The committee formulated 32 recommendation statements in the topics related to infectious disease, endocrine, gastroenterology, pharmacology, mental health and family planning. Broadly, the committee recommends close coordination of care between the lung transplant team, the cystic fibrosis care center, and specialists in other disciplines with experience in the care of CF and lung transplant recipients. These consensus statements will help lung transplant providers care for CFLTRs in order to improve post-transplant outcomes in this population.
Collapse
|
6
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Shah P, Lowery E, Chaparro C, Visner G, Hempstead SE, Abraham J, Bhakta Z, Carroll M, Christon L, Danziger-Isakov L, Diamond JM, Lease E, Leonard J, Litvin M, Poole R, Vlahos F, Werchan C, Murray MA, Tallarico E, Faro A, Pilewski JM, Hachem RR. DUPLICATE: Cystic Fibrosis Foundation Consensus Statements for the Care of Cystic Fibrosis Lung Transplant Recipients. J Heart Lung Transplant 2021. [DOI: 10.1016/j.healun.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87:1730-1757. [PMID: 33118201 DOI: 10.1111/bcp.14590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mycophenolic acid (MPA) is widely used in paediatric kidney transplant patients and sometimes prescribed for additional indications. Population pharmacokinetic or pharmacodynamic modelling has been frequently used to characterize the fixed, random and covariate effects of MPA in adult patients. However, MPA population pharmacokinetic data in the paediatric population have not been systematically summarized. The objective of this narrative review was to provide an up-to-date critique of currently available paediatric MPA population pharmacokinetic models, with emphases on modelling techniques, pharmacological findings and clinical relevance. PubMed and EMBASE were searched from inception of database to May 2020, where a total of 11 studies have been identified representing kidney transplant (n = 4), liver transplant (n = 1), haematopoietic stem cell transplant (n = 1), idiopathic nephrotic syndrome (n = 2), systemic lupus erythematosus (n = 2), and a combined population consisted of kidney, liver and haematopoietic stem cell transplant patients (n = 1). Critical analyses were provided in the context of MPA absorption, distribution, metabolism, excretion and bioavailability in this paediatric database. Comparisons to adult patients were also provided. With respect to clinical utility, Bayesian estimation models (n = 6) with acceptable accuracy and precision for MPA exposure determination have also been identified and systematically evaluated. Overall, our analyses have identified unique features of MPA clinical pharmacology in the paediatric population, while recognizing several gaps that still warrant further investigations. This review can be used by pharmacologists and clinicians for improving MPA pharmacokinetic-pharmacodynamic modelling and patient care.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Heajin Jun
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Catić-Đorđević A, Pavlović I, Spasić A, Stefanović N, Pavlović D, Damnjanović I, Mitić B, Veličković-Radovanović R. Assessment of pharmacokinetic mycophenolic acid clearance models using Monte Carlo numerical analysis. Xenobiotica 2021; 51:387-393. [PMID: 33416418 DOI: 10.1080/00498254.2020.1871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previously, we performed population pharmacokinetic analysis and indicated age, mycophenolate mofetil (MMF)/mycophenolic acid (MPA) daily dose, and presence of nifedipine in patient therapy as significant predictors of MPA apparent clearance (CL/F) variability. This study aimed to determine the reliability of previously published population pharmacokinetic models derived from similar studies. Furthermore, this study investigated correspondence between chosen population models from the literature.By means of the Monte Carlo simulation method, pharmacokinetic models from different studies are simulated and analysed in the range of standard deviations of measured system parameters as well as the range of observed model parameters taken from the comparison studies.The 1000 numerical simulations were performed for every analysed model in order to calculate the most possible MPA CL/F values according to the expected values from the performed experiment. Fitting our results with other models showed how the presence of nifedipine makes difference in MPA CL/F values.By testing the data from selected studies into our model, a similar range of expected CL/F values was obtained, which may confirm the validity of our model. The results of our population pharmacokinetic study are partially applicable in models by other researchers.
Collapse
Affiliation(s)
| | - Ivan Pavlović
- Faculty of Mechanical Engineering, University of Nis, Nis, Serbia
| | - Ana Spasić
- Faculty of Medicine, University of Nis, Nis, Serbia
| | | | | | | | - Branka Mitić
- Faculty of Medicine, University of Nis, Nis, Serbia.,Clinic of Nephrology, Clinical Center Nis, Nis, Serbia
| | | |
Collapse
|
10
|
Wang G, Ye Q, Huang Y, Lu J, Xu H, Li Z. Population pharmacokinetics of mycophenolic acid in pediatric patients with juvenile dermatomyositis and optimization of limited sampling strategy. Xenobiotica 2020; 51:167-176. [PMID: 32903096 DOI: 10.1080/00498254.2020.1819579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Juvenile dermatomyositis (JDM) is a rare systemic autoimmune disease specifically affecting children. Mycophenolate mofetil (MMF) is an immunosuppressant used to treat JDM. Mycophenolic acid (MPA) is an active metabolite of MMF. This study aimed to develop a population pharmacokinetic (PPK) model of MPA in children with JDM and optimize the limited sampling strategy (LSS). Fifteen JDM patients treated with MMF, at a median age of 7.35 (range, 3.09-16.1) years, were included. Blood samples were collected at 30 minutes pre-dose, 20 minutes, 60 minutes and 180 minutes post-dose to measure the MPA concentrations. Data were retrospectively collected from the electronic medical records. A two-compartment model with first-order absorption, lag time in absorption, and first-order elimination was developed. Height and co-administered cotrimoxazole were added as the covariates to the model. Concentrations at different time points were simulated and area under the concentration-time curve (AUC0-12 h) was calculated. By removing one sampling point at a time, AUC0-12 h from three-point sampling strategy was re-calculated via Bayesian approach. AUC0-12 h from the three-point sampling strategy (by removing the point at 20 minutes post-dose) had the strongest correlation with AUC0-12 h from the four-point sampling strategy (Pearson's r = 0.971).
Collapse
Affiliation(s)
- Guangfei Wang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiaofeng Ye
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yidie Huang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jinmiao Lu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cicali B, Long T, Kim S, Cristofoletti R. Assessing the impact of cystic fibrosis on the antipyretic response of ibuprofen in children: Physiologically-based modeling as a candle in the dark. Br J Clin Pharmacol 2020; 86:2247-2255. [PMID: 32335930 DOI: 10.1111/bcp.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/21/2023] Open
Abstract
AIM The goal of this study is to present the utility of quantitative modelling for extrapolation of drug safety and efficacy to underrepresented populations in controlled clinical trials. To illustrate this, the stepwise development of an integrated disease/pharmacokinetics/pharmacodynamics model of antipyretic efficacy of ibuprofen in children with cystic fibrosis (CF) is presented along with therapy optimization suggestions. METHOD Published clinical trials, in vitro data, and drug physiochemical properties were used to develop an ibuprofen-mediated antipyresis model for febrile children also having CF. Workflow included first developing a mechanistic absorption model using in vitro-in vivo extrapolation followed by physiologically-based pharmacokinetic (PBPK) modelling. The verified PBPK model was then scaled to paediatric patients with CF. Once verified, the PBPK model was linked to an indirect response model of antipyresis for simulation of the overall antipyretic efficacy of ibuprofen in CF children. RESULTS Model simulations showed therapeutic inequivalence between healthy children and paediatric patients with CF; Cmax and AUC decreased by 39% (32-46%) and 44% (36-52%), respectively, in patients. Further, and in agreement with literature reports, predicted pharmacodynamics time courses suggest a slower onset and faster offset of action in patients compared to healthy children, 30 and 60 minutes, respectively. Exploratory simulations suggest an increase in dosing frequency for CF children as a better therapeutic strategy. CONCLUSION Model-informed approaches to leveraging knowledge obtained throughout the life cycle of drug development may play a key role in extrapolating drug efficacy and safety to underrepresented populations.
Collapse
Affiliation(s)
- Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Tao Long
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
12
|
Abstract
The most recent comprehensive reviews on the population pharmacokinetics of mycophenolic acid (MPA) were published in 2014. Since then, several population pharmacokinetic studies on MPA have been published. The majority of literature is still focused on the kidney transplant population, although studies have also been conducted in liver and lung transplantation, autoimmune diseases, and hematopoietic stem cell transplant. While the majority of the model building is still based on parametric non-linear mixed-effects modeling, recent studies suggest the suitability of other methodologies. Additionally, instead of just focusing on pharmacokinetic modeling, a trend toward describing the relationships between pharmacokinetic and pharmacodynamic parameters is observed. Given the importance of enterohepatic recirculation (EHR) in the pharmacokinetics of MPA, more authors have attempted to characterize this process in their models. Overall, the recent models have become more sophisticated and incorporate EHR, pharmacodynamic relationships, and metabolites while maintaining many of the population values and covariates identified previously. However, the number of MPA population pharmacokinetic models describing the enteric-coated formulation of MPA (EC-MPA) is still limited. Given the increasing use of EC-MPA, more studies are needed to fill this literature gap. In addition, few studies are yet available characterizing free MPA concentration or MPA metabolites. Given the extensive protein binding, low to intermediate extraction, and intrinsic clearance characteristics of MPA in humans, including these variables would improve the population structural models.
Collapse
|
13
|
Mahjabeen S, Hatipoglu MK, Benbrook DM, Garcia-Contreras L. Pharmacokinetics and Pharmacodynamics of Escalating Doses of SHetA2 After Vaginal Administration to Mice. J Pharm Sci 2018; 107:3179-3186. [PMID: 30196041 PMCID: PMC6342475 DOI: 10.1016/j.xphs.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
SHetA2 is a novel compound with strong potential to treat cervical dysplasia, but its low aqueous solubility limits its oral bioavailability. A vaginal suppository achieved SHetA2 cervix concentrations that were severalfold above the predicted therapeutic levels. Thus, we aimed at determining the minimum dose that would achieve SHetA2 therapeutic levels while reducing cyclin D1 levels, the pharmacodynamic end point. The disposition of SHetA2 after vaginal administration of escalating SHetA2 doses and the corresponding reduction in cyclin D1 levels was compared to that after the conventional oral treatment. Vaginal administration of a 15-mg/kg dose achieved an area under the cervix concentration versus time curve (AUCcervix) that was ∼120 times larger than that after a 60 mg/kg administered orally. AUCcervix and Cmax-cervix did not increase proportionally with respect to the dose, with the 30-mg/kg dose resulting in higher AUCcervix and Cmax-cervix (1368.53 μg.mL/h and 155.38 μg/g, respectively) compared to the 15 mg/kg (334.98 μg.mL/h and 121.78 μg/g, respectively) or 60 mg/kg (1178.55 μg.mL/h and 410.38 μg/g, respectively). Likewise, the 30-mg/kg dose caused a larger reduction in cyclin D1 levels than the other doses. Thus, the 30-mg/kg dose was selected for future efficacy studies in a mouse model of cervical neoplasia.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901.
| |
Collapse
|
14
|
Author’s Reply to Woillard et al.: “Population Pharmacokinetics of Mycophenolic Acid: an Update”. Clin Pharmacokinet 2018; 57:1215-1216. [DOI: 10.1007/s40262-018-0688-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|