1
|
Algera MH, Cotten JF, van Velzen M, Niesters M, Boon M, Shoham DS, Dandrea KE, van der Schrier R, Dahan A. Are thyrotropin-releasing hormone (TRH) and analog taltirelin viable reversal agents of opioid-induced respiratory depression? Pharmacol Res Perspect 2022; 10:e00974. [PMID: 35621218 PMCID: PMC9137104 DOI: 10.1002/prp2.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Opioid-induced respiratory depression (OIRD) is a potentially life-threatening complication of opioid consumption. Apart from naloxone, an opioid antagonist that has various disadvantages, a possible reversal strategy is treatment of OIRD with the hypothalamic hormone and neuromodulator thyrotropin-releasing hormone (TRH). In this review, we performed a search in electronic databases and retrieved 52 papers on the effect of TRH and TRH-analogs on respiration and their efficacy in the reversal of OIRD in awake and anesthetized mammals, including humans. Animal studies show that TRH and its analog taltirelin stimulate breathing via an effect at the preBötzinger complex, an important respiratory rhythm generator within the brainstem respiratory network. An additional respiratory excitatory effect may be related to TRH's analeptic effect. In awake and anesthetized rodents, TRH and taltirelin improved morphine- and sufentanil-induced respiratory depression, by causing rapid shallow breathing. This pattern of breathing increases the work of breathing, dead space ventilation, atelectasis, and hypoxia. In awake and anesthetized humans, a continuous infusion of intravenous TRH with doses up to 8 mg, did not reverse sufentanil- or remifentanil-induced respiratory depression. This is related to poor penetration of TRH into the brain compartment but also other causes are discussed. No human data on taltirelin are available. In conclusion, data from animals and human indicate that TRH is not a viable reversal agent of OIRD in awake or anesthetized humans. Further human studies on the efficacy and safety of TRH's more potent and longer lasting analog taltirelin are needed as this agent seems to be a more promising reversal drug.
Collapse
Affiliation(s)
- Marieke Hyke Algera
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph F. Cotten
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Monique van Velzen
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marieke Niesters
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Martijn Boon
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Daniel S. Shoham
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Kaye E. Dandrea
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Albert Dahan
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Ijiro T, Yaguchi A, Yokoyama A, Kiguchi S. Rovatirelin ameliorates motor dysfunction in the cytosine arabinoside‐induced rat model of spinocerebellar degeneration via acetylcholine and dopamine neurotransmission. Clin Exp Pharmacol Physiol 2022; 49:950-958. [DOI: 10.1111/1440-1681.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Tomoyuki Ijiro
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd. Nagano Japan
| | - Atsushi Yaguchi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd. Nagano Japan
| | - Ayaka Yokoyama
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd. Nagano Japan
| | - Sumiyoshi Kiguchi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd. Nagano Japan
| |
Collapse
|
3
|
Yap KH, Azmin S, Che Hamzah J, Ahmad N, van de Warrenburg B, Mohamed Ibrahim N. Pharmacological and non-pharmacological management of spinocerebellar ataxia: A systematic review. J Neurol 2021; 269:2315-2337. [PMID: 34743220 DOI: 10.1007/s00415-021-10874-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxias (SCA) comprise a rare, genetic subgroup within the degenerative ataxias and are dominantly inherited, with up to 48 recognized genetic subtypes. While an updated review on the management of degenerative ataxia is published recently, an evidence-based review focussed on the management of SCA is lacking. Here, we reviewed the pharmacological and non-pharmacological management of SCA by conducting a systematic review on Medline Ovid and Scopus. Of 29,284 studies identified, 47 studies (pharmacological: n = 25; non-pharmacological: n = 22) that predominantly involved SCA patients were included. Twenty studies had a high risk of bias based on the Cochrane's Collaboration risk of bias tool. As per the European Federation of Neurological Societies 2004 guideline for therapeutic intervention, the remaining 27 studies were of Class I (n = 4) and Class II (n = 23) evidence. Only two therapies had Level A recommendations for the management of ataxia symptoms: riluzole and immediate in-patient neurorehabilitation. Ten therapies had Level B recommendations for managing ataxia symptoms and require further investigations with better study design. These include high dose valproate acid, branched-chain amino acid, intravenous trehalose; restorative rehabilitation using cycling regimen and videogame; and cerebellar stimulations using transcranial direct current stimulation and transcranial magnetic stimulation. Lithium and coaching on psychological adjustment received Level B recommendation for depressive symptoms and quality of life, respectively. Heterogeneous study designs, different genotypes, and non-standardized clinical measures alongside short duration and small sample sizes may hamper meaningful clinical translation. Therefore, rating of recommendations only serve as points of reference.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Jemaima Che Hamzah
- Department of Ophthalmology, UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Norfazilah Ahmad
- Department of Community Health, UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
4
|
Ijiro T, Yaguchi A, Yokoyama A, Abe Y, Kiguchi S. Ameliorating effect of rovatirelin on the ataxia in rolling mouse Nagoya. Eur J Pharmacol 2020; 882:173271. [PMID: 32534077 DOI: 10.1016/j.ejphar.2020.173271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023]
Abstract
Rovatirelin is a newly synthetized thyrotropin-releasing hormone (TRH) analog. This study aimed to investigate the effect of rovatirelin on motor function using rolling mouse Nagoya (RMN), a mouse model of hereditary ataxia, and compare it with that of taltirelin, which is clinically used to treat spinocerebellar degeneration in Japan. We also examined the effect of rovatirelin on glucose metabolism in various brain regions of RMN using autoradiography (ARG). Rovatirelin (1, 3, 10, and 30 mg/kg) dose-dependently reduced the fall index in RMN, and its effect was more potent than that of taltirelin (3, 10, 30, and 100 mg/kg). No attenuation of the effect was observed by repeated daily administration for 2 weeks. Furthermore, the reduction in the fall index by rovatirelin persisted for 2 weeks after completing treatment. In the ARG study, rovatirelin induced a significantly elevated uptake of glucose in the prefrontal cortex, nucleus accumbens shell, nucleus accumbens core, striatum, anterior cingulate cortex, secondary motor area, pretectal area, ventral tegmental area, black pars compacta, locus coeruleus, nucleus cerebellaris middle nucleus, medial nucleus of the vestibular nerve, fourth/fifth lobule, and third lobule. Furthermore, rovatirelin increased cerebellar mRNA level of brain derived neurotrophic factor. These results suggest that rovatirelin activates the cerebellum and other parts of the central nervous system to improve motor function in spinocerebellar ataxia (SCA) model animals, and its action is more potent than that of taltirelin. Therefore, rovatirelin can be a potential alternative to the traditionally used therapeutics for SCA.
Collapse
Affiliation(s)
- Tomoyuki Ijiro
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., 4365-1, Hotaka Kashiwabara, Azumino Nagano, 399-8304, Japan
| | - Atsushi Yaguchi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., 4365-1, Hotaka Kashiwabara, Azumino Nagano, 399-8304, Japan
| | - Ayaka Yokoyama
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., 4365-1, Hotaka Kashiwabara, Azumino Nagano, 399-8304, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., 4365-1, Hotaka Kashiwabara, Azumino Nagano, 399-8304, Japan
| | - Sumiyoshi Kiguchi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., 4365-1, Hotaka Kashiwabara, Azumino Nagano, 399-8304, Japan.
| |
Collapse
|
5
|
Kobayashi K, Abe Y, Kawai A, Furihata T, Endo T, Takeda H. Pharmacokinetic Drug Interactions of an Orally Available TRH Analog (Rovatirelin) With a CYP3A4/5 and P-Glycoprotein Inhibitor (Itraconazole). J Clin Pharmacol 2020; 60:1314-1323. [PMID: 32459872 DOI: 10.1002/jcph.1628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
The effects of itraconazole on the pharmacokinetics of rovatirelin were investigated in an open-label, single-sequence drug-drug interaction study in 16 healthy subjects. Subjects were administered a single oral dose of rovatirelin (1.6 mg) on day 1 and day 15. From day 8 through 16, subjects received daily oral doses of itraconazole (200 mg/day). Concentrations of rovatirelin and (thiazolylalanyl)methylpyrrolidine (TAMP), the major metabolite of rovatirelin formed by cytochrome P450 (CYP) 3A4/5, were determined in plasma and urine. Pharmacokinetic parameters were used to evaluate the drug-drug interaction potential of rovatirelin as a victim. With coadministration, maximum concentration (Cmax ) and area under the concentration-time curve extrapolated to infinity (AUCinf ) of rovatirelin increased 3.05-fold and 2.82-fold, respectively, and the 90% confidence intervals of the ratios for Cmax (2.64-3.52) and AUCinf (2.47-3.23) did not fall within the 0.8-1.25 boundaries. Urinary excretion of rovatirelin increased at almost the same ratio as the AUCinf ratio with coadministration; however, renal clearance did not change. Cmax , AUCinf , and urinary excretion of TAMP were decreased by coadministration. Itraconazole has the potential to inhibit drug transport via intestinal P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP); therefore, substrate assessments of rovatirelin for the 2 transporters were evaluated using Caco-2 cell monolayers. In vitro studies showed that rovatirelin is a substrate for P-gp but not for BCRP. The current study shows that itraconazole's effect on rovatirelin pharmacokinetics is mediated through inhibition of CYP3A4/5 and intestinal P-gp.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Asuka Kawai
- Clinical Development Division, Kissei Pharmaceutical Co, Ltd., Bunkyo, Tokyo, Japan
| | - Takao Furihata
- Clinical Development Division, Kissei Pharmaceutical Co, Ltd., Bunkyo, Tokyo, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Hiroo Takeda
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| |
Collapse
|
6
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
7
|
Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 2020; 91:254-262. [PMID: 31937586 PMCID: PMC7035688 DOI: 10.1136/jnnp-2019-322168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the efficacy of rovatirelin, a thyrotropin-releasing hormone analogue, for ataxias in patients with spinocerebellar degeneration (SCD). METHODS Two multicentre, randomised, double-blind, placebo-controlled phase 3 studies (KPS1301, KPS1305) enrolled patients with predominant cerebellar ataxia, including SCA6, SCA31 or cortical cerebellar atrophy. KPS1301 enrolled patients with truncal ataxia and KPS1305 enrolled patients with truncal and limb ataxia. Each study included 4 weeks of pretreatment, a 28-week or 24-week treatment period and 4 weeks of follow-up. Patients were randomised (1:1:1) to rovatirelin (1.6 or 2.4 mg) or placebo in KPS1301, and randomised (1:1) to rovatirelin 2.4 mg or placebo in KPS1305. The primary endpoint was change in Scale for the Assessment and Rating of Ataxia (SARA) total scores. Pooled analysis was performed in patients who met the SARA recruitment criteria of KPS1305. RESULTS From October 2013 to May 2014, KPS1301 enrolled 411 patients; 374 were randomised to rovatirelin 1.6 mg (n=125), rovatirelin 2.4 mg (n=126) or placebo (n=123). From November 2016 to August 2017, KPS1305 enrolled 241 patients; 203 were randomised to rovatirelin 2.4 mg (n=101) or placebo (n=102). The primary endpoint showed no significant difference between rovatirelin and placebo in these two studies. In the pooled analysis (n=278), the difference between rovatirelin 2.4 mg (n=140) and placebo (n=138) was -0.61 (-1.64 vs -1.03; 95% CI -1.16 to -0.06; p=0.029) in the adjusted mean change in the SARA total score. CONCLUSIONS Rovatirelin is a potentially effective treatment option for SCD. TRIAL REGISTRATION NUMBER NCT01970098; NCT02889302.
Collapse
Affiliation(s)
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Yoshitaka Shimizu
- Strategic Alliance Department, Kissei Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Masayuki Yamada
- Clinical Data Science Department, Kissei Pharmaceutical Co., Ltd, Tokyo, Japan
| | | |
Collapse
|
8
|
Kobayashi N, Sato N, Sugita K, Takahashi K, Sugawara T, Tada Y, Yoshikawa T. Synthesis and evaluation of in vivo anti-hypothermic effect of all stereoisomers of the thyrotropin-releasing hormone mimetic: Rovatirelin Hydrate. J Pept Sci 2019; 25:e3228. [PMID: 31713944 DOI: 10.1002/psc.3228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/06/2022]
Abstract
We discovered the orally active thyrotropin-releasing hormone (TRH) mimetic: (4S,5S)-5-methyl-N-{(2S)-1-[(2R)-2-methylpyrrolidin-1-yl]-1-oxo-3-(1,3-thiazol-4-yl)propan-2-yl}-2-oxo-1,3-oxazolidine-4-carboxamide 1 (rovatirelin). The central nervous system (CNS) effect of rovatirelin after intravenous (iv) administration is 100-fold higher than that of TRH. As 1 has four asymmetric carbons in its molecule, there are 16 stereoisomers. We synthesized and evaluated the anti-hypothermic effect of all stereoisomers of 1, which has the (4S),(5S),(2S),(2R) configuration from the N-terminus to the C-terminus, in order to clarify the structure-activity relationship (SAR) of stereoisomers. The (4R),(5R),(2R),(2S)-isomer 16 did not show any anti-hypothermic effect. Only the (4S),(5S),(2S),(2S)-isomer 10, which has the (2S)-2-methylpyrrolidine moiety at the C-terminus showed the anti-hypothermic effect similar to 1. Stereoisomers, which have the (5R) configuration of the oxazolidinone at the N-terminus and the (2R) configuration at the middle-part, showed a much lower anti-hypothermic effect than that of 1. On the other hand, stereoisomers, which have the (4R) configuration of the oxazolidinone at the N-terminus or the (2S) configuration of the C-terminus, have little influence on the anti-hypothermic effect.
Collapse
Affiliation(s)
- Naotake Kobayashi
- Medicinal chemistry research laboratory, Shionogi & Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Norihito Sato
- Research Laboratory for Development, Shionogi & Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Katsuji Sugita
- Research Laboratory for Development, Shionogi & Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Kouji Takahashi
- DMPK Services, Shionogi Techno Advance Research Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Tamio Sugawara
- Medicinal chemistry research laboratory, Shionogi & Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Yukio Tada
- Medicinal chemistry research laboratory, Shionogi & Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Takayoshi Yoshikawa
- Pharmacovigilance Japan, Allergan Japan K.K., 4-20-3-35, Ebisu Shibuya-ku, Tokyo, 150-6035, Japan
| |
Collapse
|
9
|
Kobayshi K, Abe Y, Kawai A, Furihata T, Harada H, Endo T, Takeda H. Human mass balance, pharmacokinetics and metabolism of rovatirelin and identification of its metabolic enzymes in vitro. Xenobiotica 2019; 49:1434-1446. [DOI: 10.1080/00498254.2019.1580796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kaoru Kobayshi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Asuka Kawai
- Department of Clinical Projects Management, Kissei Pharmaceutical Co., Ltd, Bunkyo, Tokyo, Japan
| | - Takao Furihata
- Department of Clinical Projects Management, Kissei Pharmaceutical Co., Ltd, Bunkyo, Tokyo, Japan
| | - Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Hiroo Takeda
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| |
Collapse
|