1
|
Öeren M, Hunt PA, Wharrick CE, Tabatabaei Ghomi H, Segall MD. Predicting routes of phase I and II metabolism based on quantum mechanics and machine learning. Xenobiotica 2024; 54:379-393. [PMID: 37966132 DOI: 10.1080/00498254.2023.2284251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Unexpected metabolism could lead to the failure of many late-stage drug candidates or even the withdrawal of approved drugs. Thus, it is critical to predict and study the dominant routes of metabolism in the early stages of research.We describe the development and validation of a 'WhichEnzyme' model that accurately predicts the enzyme families most likely to be responsible for a drug-like molecule's metabolism. Furthermore, we combine this model with our previously published regioselectivity models for Cytochromes P450, Aldehyde Oxidases, Flavin-containing Monooxygenases, UDP-glucuronosyltransferases and Sulfotransferases - the most important Phase I and Phase II drug metabolising enzymes - and a 'WhichP450' model that predicts the Cytochrome P450 isoform(s) responsible for a compound's metabolism.The regioselectivity models are based on a mechanistic understanding of these enzymes' actions and use quantum mechanical simulations with machine learning methods to accurately predict sites of metabolism and the resulting metabolites. We train heuristics based on the outputs of the 'WhichEnzyme', 'WhichP450', and regioselectivity models to determine the most likely routes of metabolism and metabolites to be observed experimentally.Finally, we demonstrate that this combination delivers high sensitivity in identifying experimentally reported metabolites and higher precision than other methods for predicting in vivo metabolite profiles.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
3
|
Hanioka N, Tanaka-Kagawa T, Mori Y, Ikushiro S, Jinno H, Ohkawara S, Isobe T. Regioselective Glucuronidation of Flavones at C5, C7, and C4′ Positions in Human Liver and Intestinal Microsomes: Comparison among Apigenin, Acacetin, and Genkwanin. Biol Pharm Bull 2022; 45:1116-1123. [DOI: 10.1248/bpb.b22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy
| |
Collapse
|
4
|
Bian Y, Sun M, Chen H, Ren G, Fu K, Yang N, Zhang M, Zhou N, Lu Y, Li N, Zhang Y, Chen X, Zhao D. Metabolites identification and species comparison of Oroxylin A, an anti-cancer Flavonoid, in vitro and in vivo by HPLC-Q-TOF-MS/MS. Xenobiotica 2022; 52:165-176. [DOI: 10.1080/00498254.2021.2014080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yueying Bian
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Mengqi Sun
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Guanghui Ren
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Kejia Fu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Nan Yang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Mei Zhang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Nan Zhou
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| |
Collapse
|
5
|
Tronina T, Mrozowska M, Bartmańska A, Popłoński J, Sordon S, Huszcza E. Simple and Rapid Method for Wogonin Preparation and Its Biotransformation. Int J Mol Sci 2021; 22:ijms22168973. [PMID: 34445678 PMCID: PMC8396506 DOI: 10.3390/ijms22168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4′-hydroxywogonin—a rare flavonoid which exhibits anticancer activity—whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
- Correspondence: ; Tel.: +48-71320-5019
| | - Monika Mrozowska
- Department of Histology and Embryology, Wroclaw Medical University, T. Chałubinskiego 6a, 50-368 Wroclaw, Poland;
| | - Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| |
Collapse
|
6
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
7
|
Chen M, Ren X, Sun S, Wang X, Xu X, Li X, Wang X, Li X, Yan X, Li R, Wang Y, Liu X, Dong Y, Fu X, She G. Structure, Biological Activities and Metabolism of Flavonoid Glucuronides. Mini Rev Med Chem 2021; 22:322-354. [PMID: 34036917 DOI: 10.2174/1389557521666210521221352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. METHODS Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc.. CONCLUSION Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Gaimei She
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia 750004, China
| |
Collapse
|
8
|
Hanioka N, Isobe T, Tanaka-Kagawa T, Jinno H, Ohkawara S. In vitro glucuronidation of bisphenol A in liver and intestinal microsomes: interspecies differences in humans and laboratory animals. Drug Chem Toxicol 2020; 45:1565-1569. [PMID: 33187449 DOI: 10.1080/01480545.2020.1847133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical, and is predominantly metabolized into glucuronide in mammals. The present study was conducted in order to examine the hepatic and intestinal glucuronidation of BPA in humans and laboratory animals such as monkeys, dogs, rats, and mice in an in vitro system using microsomal fractions. Km, Vmax, and CLint values in human liver microsomes were 7.54 µM, 17.7 nmol/min/mg protein, and 2.36 mL/min/mg protein, respectively. CLint values in liver microsomes of monkey, dogs, rats, and mice were 1.5-, 2.4-, 1.7- and 8.2-fold that of humans, respectively. In intestinal microsomes, Km, Vmax, and CLint values in humans were 39.3 µM, 0.65 nmol/min/mg protein, and 0.02 mL/min/mg protein, respectively. The relative levels of CLint in monkey, dogs, rats, and mice to that of humans were 7.0-, 12-, 34-, and 29-fold, respectively. Although CLint values were higher in liver microsomes than in intestinal microsomes in all species, and marked species difference in the ratio of liver to intestinal microsomes was observed as follows: humans, 118; monkeys, 25; dogs, 23; rats, 5.9; mice, 33. These results suggest that the functional roles of UDP-glucuronosyltransferase (UGT) enzymes expressed in the liver and intestines in the metabolism of BPA extensively differ among humans, monkeys, dogs, rats, and mice.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| |
Collapse
|