1
|
Li X, Wang F, Zhang X, Shen X, Yang C, Zheng Y, Diao X. Utility of quantitative whole-body autoradiography (QWBA) and oxidative combustion (OC) analysis in the assessment of tissue distribution of [14C]Mefuparib (CVL218) in SD and LE rats. PLoS One 2024; 19:e0315223. [PMID: 39637187 PMCID: PMC11620678 DOI: 10.1371/journal.pone.0315223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In tissue distribution studies of radiopharmaceuticals, quantitative whole-body autoradiography (QWBA) and oxidative combustion (OC) analysis are the two important methods that have not been compared using the same drug. Sprague-Dawley (SD) and Long-Evans (LE) rats, both of which are commonly used rodents in tissue distribution studies, have also not been compared using the same drug. Comparative studies are important for aiding the selection of appropriate experimental methods and animals. METHODS To evaluate the tissue distribution of [14C]Mefuparib (CVL218) in rats and assess its clinical safety, QWBA and OC analysis were used. The differences between the two methods were noted. Comparisons between the tissue distribution results of LE and SD rats were also done. RESULTS The QWBA and OC distribution analysis showed that [14C]CVL218-related radioactivity could be distributed in 19 tissues. For 89.47% of the tissues, no significant differences were noted between the two methods. There were also no differences in the pharmacokinetics data for plasma and brain homogenates between LE and SD rats. However, the pharmacokinetics data for liver and kidney homogenates were seven-fold higher in LE rats than in SD ones. CONCLUSIONS Both the OC and QWBA methods revealed that [14C]CVL218 could be widely distributed in the tissues of rats. The OC had a lower limit of quantification while QWBA provided a more comprehensive analysis of [14C]CVL218 distribution. More safety was associated with using LE rat data to estimate the dosimetry of [14C]CVL218 for the whole-body, for human radiolabeled mass balance studies.
Collapse
Affiliation(s)
- Xinmei Li
- Department of Pharmacy, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Feiyu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China
| | - Xinyue Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China
| | | | - Chunhao Yang
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China
| | - Yuandong Zheng
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China
| | - Xingxing Diao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China
| |
Collapse
|
2
|
Zhang X, Liu D, Lu M, Yuan Y, Yang C, Yang Y, Xiu J, Hu P, Zheng Y, Diao X. Absorption, distribution, metabolism and excretion of linaprazan glurate in rats. J Pharm Biomed Anal 2024; 242:116012. [PMID: 38354539 DOI: 10.1016/j.jpba.2024.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Linaprazan (AZD0865, TX07) is one of potassium-competitive acid blockers. However, linaprazan is rapidly excreted from the body, shortening its acid inhibition property. Linaprazan glurate (X842) is a prodrug of linaprazan with a prolonged inhibitory effect on gastric acid secretion. Linaprazan glurate has entered clinical trials, but few studies have reported its metabolism in non-clinical and clinical settings. In this study, we studied the pharmacokinetics, tissue distribution, mass balance, and metabolism of linaprazan glurate in rats after a single oral dose of 2.4 mg/kg (100 µCi/kg) [14C]linaprazan glurate. The results demonstrated that linaprazan glurate was mainly excreted via feces in rats with 70.48% of the dose over 168 h. The plasma AUC0-∞ of linaprazan glurate in female rats was 2 times higher than that in male rats. Drug-related substances were mainly concentrated in the stomach, eyes, liver, small intestine, and large intestine after administration. In blood, drug-related substances were mostly distributed into plasma instead of hemocytes. In total, 13 metabolites were detected in rat plasma, urine, feces, and bile. M150 (2,6-dimethylbenzoic acid) was the predominant metabolite in plasma, accounting for 80.65% and 67.65% of AUC0-24h in male and female rats, respectively. Based on the structures, linaprazan glurate was mainly hydrolyzed into linaprazan, followed by a series of oxidation, dehydrogenation, and glucuronidation in rats. Besides, CES2 is the main metabolic enzyme involved in the hydrolysis of linaprazan glurate to linaprazan.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Donghui Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ming Lu
- Jiangsu Sinorda Biomedicine Co., Ltd., Taicang 215400, China
| | - Yali Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chen Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jin Xiu
- Jiangsu Sinorda Biomedicine Co., Ltd., Taicang 215400, China
| | - Pingsheng Hu
- Jiangsu Sinorda Biomedicine Co., Ltd., Taicang 215400, China.
| | - Yuandong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xingxing Diao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
3
|
Ge X, Ma S, Yan S, Wu Y, Chen C, Tang C, Zhan Y, Bian YC, Shen K, Feng S, Gao X, Zhong D, Zhang H, Miao LY, Diao XX. Mass balance study of [ 14C]SHR0302, a selective and potent JAK1 inhibitor in humans. Xenobiotica 2023; 53:69-83. [PMID: 36745485 DOI: 10.1080/00498254.2023.2176267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHR0302, a selective JAK1 inhibitor developed by Jiangsu Hengrui Pharmaceutical Co., was intended for the treatment of rheumatoid arthritis. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of SHR0302 in six healthy Chinese male subjects after a single 8 mg (80 µCi) oral dose of [14C]SHR0302.SHR0302 was absorbed rapidly (Tmax = 0.505 h), and the average t1/2 of the SHR0302-related components in plasma was approximately 9.18 h. After an oral dose was administered, the average cumulative excretion of the radioactive components was 100.56% ± 1.51%, including 60.95% ± 11.62% in urine and 39.61% ± 10.52% in faeces.A total of 16 metabolites were identified. In plasma, the parent drug SHR0302 accounted for 90.42% of the total plasma radioactivity. In urine, SHR161279 was the main metabolite, accounting for 33.61% of the dose, whereas the parent drug SHR0302 only accounted for 5.1% of the dose. In faeces, the parent drug SHR0302 accounted for 23.73% of the dose, and SHR161279 was the significant metabolite, accounting for 5.67% of the dose. In conclusion, SHR0302-related radioactivity was mainly excreted through urine (60.95%) and secondarily through faeces (39.61%).The metabolic reaction of SHR0302 in the human body is mainly through mono-oxidation and glucuronidation. The main metabolic location of SHR0302 in the human body is the pyrrolopyrimidine ring.
Collapse
Affiliation(s)
- Xinyu Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ma
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yali Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chongzhuang Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Cong Bian
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Kai Shen
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Sheng Feng
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Xuehu Gao
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Li-Yan Miao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Xing-Xing Diao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|