1
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
2
|
He YQ, Yang L, Liu HX, Zhang JW, Liu Y, Fong A, Xiong AZ, Lu YL, Yang L, Wang CH, Wang ZT. Glucuronidation, a new metabolic pathway for pyrrolizidine alkaloids. Chem Res Toxicol 2010; 23:591-9. [PMID: 20092275 DOI: 10.1021/tx900328f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) possess significant hepatotoxicity to humans and animals after metabolic activation by liver P450 enzymes. Metabolism pathways of PAs have been studied for several decades, including metabolic activation, hydroxylation, N-oxidation, and hydrolysis. However, the glucuronidation of intact PAs has not been investigated, although glucuronidation plays an important role in the elimination and detoxication of xenobiotics. In this study, PAs glucuronidation was investigated, and three important points were found. First, we demonstrated that senecionine (SEN)-a representative hepatotoxic PA-could be conjugated by glucuronic acid via an N-glucuronidation reaction catalyzed by uridine diphosphate glucuronosyl transferase in human liver microsomes. Second, glucuronidation of SEN was catalyzed not only by human but also other animal species and showed significant species differences. Rabbits, cattle, sheep, pigs, and humans showed the significantly higher glucuronidation activity than mice, rats, dogs, and guinea pigs on SEN. Kinetics of SEN glucuronidation in humans, pigs, and rabbits followed the one-site binding model of the Michaelis-Menten equation, while cattle and sheep followed the two-sites binding model of the Michaelis-Menten equation. Third, besides SEN, other hepatotoxic PAs including monocrotaline, adonifoline, and isoline also underwent N-glucuronidation in humans and several animal species such as rabbits, cattle, sheep, and pigs.
Collapse
Affiliation(s)
- Yu-Qi He
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201210, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lagas JS, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters. Mol Pharmacol 2010; 77:687-94. [PMID: 20086033 DOI: 10.1124/mol.109.062364] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diclofenac is an important analgesic and anti-inflammatory drug that is widely used for the treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Diclofenac is extensively metabolized in the liver, and the main metabolites are hydroxylated and/or glucuronidated conjugates. We show here that loss of multidrug resistance protein 2 (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) in mice results in highly increased plasma levels of diclofenac acyl glucuronide, after both oral and intravenous administration. The absence of Mrp2 and Bcrp1, localized at the canalicular membrane of hepatocytes, leads to impaired biliary excretion of acyl glucuronides and consequently to elevated liver and plasma levels. Mrp2 also mediates the biliary excretion of two hydroxylated diclofenac metabolites, 4'-hydroxydiclofenac and 5-hydroxydiclofenac. We further show that the sinusoidal efflux of diclofenac acyl glucuronide, from liver to blood, is largely dependent on multidrug resistance protein 3 (MRP3/ABCC3). Diclofenac acyl glucuronides are chemically instable and reactive, and in patients, these metabolites are associated with rare but serious idiosyncratic liver toxicity. This might explain why Mrp2/Mrp3/Bcrp1(-/-) mice, which have markedly elevated levels of diclofenac acyl glucuronides in their liver, display acute, albeit very mild, hepatotoxicity. We believe that the handling of diclofenac acyl glucuronides by ATP binding cassette transporters may be representative for the handling of acyl glucuronide metabolites of many other clinically relevant drugs.
Collapse
Affiliation(s)
- Jurjen S Lagas
- Division Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
4
|
Nemeth K, Piskula MK. Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr 2007; 47:397-409. [PMID: 17457724 DOI: 10.1080/10408390600846291] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question as to how far the development of chronic diseases in humans depends on diet still remains open. Simultaneously, epidemiological studies suggest the consumption of a flavonoids rich diet might decrease the risk of degenerative changes and certain diseases. The intake of this group of compounds as to quality and quantity depends on dietary habits and a widespread presence of quercetin in the diet makes this compound one of the key factors. Onion, one of the richest and most common quercetin sources, was particularly often studied in different aspects. Quercetin is present in onion mainly as glycosides, of which the distribution within the onion bulb changes in onion processing, and biological activities attracted a lot of attention. Especially antioxidative activity demonstrated in vitro was initially associated with most of the beneficial effects of quercetin on the human body. However, after ingestion quercetin undergoes extensive metabolism and microbial action resulting in its altered or degraded structure; therefore, most of the effects shown in in vitro experiments with the pure compound cannot be directly extrapolated to in vivo systems. Yet, this does not mean that quercetin simultaneously loses its positive impact on consumer health. Even after being metabolized it may still affect the redox balance by inducing antioxidative and detoxifying enzymes or compounds which may be involved in sustaining homeostasis.
Collapse
Affiliation(s)
- K Nemeth
- VUP Food Research Institute, Priemyselna 4, 824 75 Bratislava, Slovak Republic
| | | |
Collapse
|
5
|
Miles KK, Kessler FK, Smith PC, Ritter JK. Characterization of Rat Intestinal Microsomal UDP-Glucuronosyltransferase Activity toward Mycophenolic Acid. Drug Metab Dispos 2006; 34:1632-9. [PMID: 16790558 DOI: 10.1124/dmd.106.010140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycophenolic acid (MPA) is the active immunosuppressive metabolite of the anti-organ rejection drug mycophenolate mofetil (MMF) and is implicated in the gastrointestinal toxicity associated with MMF therapy. Intestinal UDP-glucuronosyltransferases (UGT) have been proposed to provide intrinsic resistance against MMF-induced gastrointestinal toxicity by converting MPA to the inactive MPA 7-O-glucuronide. Using an optimized intestinal microsome preparation method that stabilized the intestinal MPA UGT activity, the MPA UGT activity of male Sprague-Dawley rat intestinal microsomes was characterized. A longitudinal gradient similar to that described for other phenolic compounds was observed, with the activity decreasing from the duodenum to the distal small intestine and colon. The catalytic efficiency of MPA glucuronidation decreased from the proximal to distal intestine as a result of decreasing Vmax and increasing Km. The finding that homozygous Gunn rats lack detectable intestinal MPA UGT activity indicates exclusive roles of UGT1A1, UGT1A6, and/or UGT1A7. Quantitative immunoblotting revealed a parallel between the MPA UGT activity and the content of UGT1A7-like immunoreactivity (18.7 and 7.3 microg/mg for duodenum and colon, respectively). In contrast, the lesser MPA-metabolizing UGT, UGT1A1 and UGT1A6, were lower in abundance (1.6-2.1 and 1.7-2.9 microg/mg, respectively), and their patterns of longitudinal distribution were distinct from the MPA UGT activity. These data suggest a dominant role of a UGT1A7-like enzyme, presumably UGT1A7 itself, in the catalysis of rat intestinal MPA glucuronidation. Studies are ongoing to investigate the relationship between intestinal UGT1A enzymes and susceptibility to MMF-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Kristini K Miles
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 Richmond, VA 23298-0613, USA
| | | | | | | |
Collapse
|
6
|
Takemoto K, Yamazaki H, Tanaka Y, Nakajima M, Yokoi T. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica 2003; 33:43-55. [PMID: 12519693 DOI: 10.1080/0049825021000022348] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The use of everted sacs of the small intestine as an enzyme source for studying the metabolism of xenobiotics by cytochrome P450 (P450, CYP) enzymes and UDP-glucuronosyltransferases has been investigated. 2. Most of the drug oxidation activities for testosterone, bufuralol, ethoxyresorufin and 7-ethoxycoumarin resided in the upper part of the everted sacs and in intestinal microsomes. Testosterone 6 beta-hydroxylase activities in the everted sacs were about two times higher than those in the intestinal microsomes. By freezing and thawing treatment, the testosterone 6 beta- and 16 alpha-hydroxylase activities of the everted sacs were considerably decreased, and those of the intestinal microsomes were abolished. 3. Microsomal testosterone 6 beta-hydroxylation, bufuralol 1'-hydroxylation, and pentoxyresorufin and ethoxyresorufin O-dealkylation were inhibited by ketoconazole, quinine, metyrapone and alpha-naphthoflavone respectively. Immunoreactive proteins using anti-CYP2B1 and anti-CYP3A2 antibodies were detected in the upper and middle parts of the rat small intestine. 4. Except for morphine 3-glucuronidation, glucuronidation activities in intestinal microsomes or everted sacs were not dependent on the intestinal region. The lower part of the everted sacs exhibited about 10 times higher morphine-3-glucuronidation activities compared with those of the upper part. The glucuronidation activities of 4-nitrophenol in the everted sacs were 10 times higher than those in microsomes. 5. These results demonstrated that the upper part of rat small intestine serves as the major site for intestinal P450-mediated first-pass metabolism. CYP3A enzymes in rat intestinal microsomes may not be stable but probably play an important role in drug oxidations. The high activity of glucuronidation in the rat small intestine should also be considered in terms of drug metabolism.
Collapse
Affiliation(s)
- K Takemoto
- Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
7
|
Atchison CR, West AB, Balakumaran A, Hargus SJ, Pohl LR, Daiker DH, Aronson JF, Hoffmann WE, Shipp BK, Treinen-Moslen M. Drug enterocyte adducts: possible causal factor for diclofenac enteropathy in rats. Gastroenterology 2000; 119:1537-47. [PMID: 11113075 DOI: 10.1053/gast.2000.20186] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Enteropathy is a frequent complication of diclofenac and other nonsteroidal anti-inflammatory drugs, yet little is known about the underlying mechanism. One possibility is that reactive metabolites of diclofenac form adducts with enterocyte macromolecules, as previously shown for liver. We addressed this possibility by using immunohistochemistry to detect diclofenac adducts. METHODS Rats were treated orally with diclofenac (10-100 mg/kg) and killed after 1-24 hours, and their gastrointestinal (GI) tracts were evaluated for ulcer number and area. Adduct distribution and intensity were assessed by immunohistochemistry by using a technique to simultaneously process and stain multiple intestinal rings. RESULTS Drug treatment led to dose-dependent formation of both adducts and ulcers only in small intestine and only in animals with intact enterohepatic circulation. Adducts formed within enterocytes by 1 hour, translocated to the brush border, preceded ulceration and vascular protein leakage, and were intense at sites of ulceration. Adducts and ulcers exhibited a parallel distribution within intestinal quintiles: 3rd > 5th >> 1st. CONCLUSIONS Diclofenac treatment resulted in the formation of drug adducts in enterocytes. Because this molecular change occurred before ulceration, was dose dependent, and exhibited concordant distribution with extent of ulceration, the results suggest a causal role for drug adduct formation in diclofenac enteropathy.
Collapse
Affiliation(s)
- C R Atchison
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Narayanan R, LeDuc B, Williams DA. Determination of the kinetics of rat UDP-glucuronosyltransferases (UGTs) in liver and intestine using HPLC. J Pharm Biomed Anal 2000; 22:527-40. [PMID: 10766370 DOI: 10.1016/s0731-7085(00)00241-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridinediphosphoglucuronosyl transferases (UGTs) are a group of membrane bound proteins which catalyze the transfer of glucuronic acid from UDP-glucuronic acid to a wide variety of xenobiotics and drug molecules enabling them to be eliminated. The major UGT isoforms found in the rat are 1A1, 1A6, 2B1 and 2B12. Conventional methods for the assay of glucuronides (GLs) include TLC, extraction and colorimetry or quantification of the aglycone, liberated after hydrolyzing the GL with beta-glucuronidase. However these techniques cannot distinguish between isomeric GLs or GLs of multiple acceptor site substrates. Therefore the purpose of this study was to develop simple and sensitive HPLC methods for the direct and simultaneous analysis of the GL(s) and their aglycones without the drawbacks of the conventional methods. The three classical substrates we chose were 4-methylumbelliferone (4MU), testosterone (TES) and 8-hydroxyquinoline (8HOQ) representing UGT isoforms 1A6, 2B1 and 2B12 of the rat family, respectively. Here we report the validated HPLC conditions, for the detection and separation of 4-methylumbelliferone glucuronide (4MUG), testosterone glucuronide (TESG) and 8-hydroxyquinoline glucuronide (8HOQG) and their aglycones in incubation media containing male Sprague-Dawley rat liver and intestinal microsomal preparations. The separations were achieved on a Zorbax SB-CN column (150 x 4.6 mm, 5 micron). The analysis time for the separation of TES, 8HOQ and 4MU and their glucuronides were 17, 12 and 30 min, respectively. The methods showed excellent linearity (r2 > 0.99) over the concentration ranges tested (0.25-5.0 nmoles of TESG; 0.125-18.75 nmoles of 8HOQG and 0.125-12.5 nmoles of 4MUG), good precision and accuracy (RSD<2.5%). Inter-day variability studies (n = 3) showed no significant difference between the regression lines obtained on the three days. Recoveries were good ( > 90%) at all three points (low, mid-point, high) of the standard curve. The limits of detection were 0.125, 0.1 and 0.1 nmole for TESG, 8HOQG and 4MUG. respectively. The above methods were used to estimate kinetic parameters such as Vmax and Km for the GLs of the three substrates in both liver and intestinal tissue preparations and the values were comparable with previously reported results. UGT2B1 was found primarily in the liver while UGTs 1A6 and 2B12 were present in comparable amounts in both tissues.
Collapse
Affiliation(s)
- R Narayanan
- Division of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA 02115, USA
| | | | | |
Collapse
|
9
|
Crespy V, Morand C, Manach C, Besson C, Demigne C, Remesy C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G120-6. [PMID: 10409158 DOI: 10.1152/ajpgi.1999.277.1.g120] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rutin and quercetin absorption and metabolism were investigated in rats after in situ perfusion of jejunum plus ileum (15 nmol/min). In contrast to rutin, a high proportion of quercetin (two-thirds) disappeared during perfusion, reflecting extensive transfer into the intestinal wall. Net quercetin absorption was not complete (2.1 nmol/min), inasmuch as 52% were reexcreted in the lumen as conjugated derivatives (7.7 nmol/min). Enterohepatic recycling contribution of flavonoids was excluded by catheterization of the biliary duct before perfusion. After a 30-min perfusion period, 0.71 microM of quercetin equivalents were detected in plasma, reflecting a significant absorption from the small intestine. The differential hydrolysis of effluent samples by glucuronidase and/or sulfatase indicates that the conjugated forms released in the lumen were 1) glucuronidated derivatives of quercetin and of its methoxylated forms (64%) and 2) sulfated form of quercetin (36%). In vitro quercetin glucuronides synthetized using jejunal and ileal microsomal fractions were similar to those recovered in the effluent of perfusion. These data suggest that glucuronidation and sulfatation take place in intestinal cells, whereas no glucurono-sulfoconjugates could be detected in the effluent. The present work shows that a rapid quercetin absorption in the small intestine is very effective together with its active conjugation in intestinal cells.
Collapse
Affiliation(s)
- V Crespy
- Laboratoire des Maladies Métaboliques et des Micronutriments, Institut National de la Recherche Agronomique de Clermont-Ferrand/Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
10
|
Seitz S, Boelsterli UA. Diclofenac acyl glucuronide, a major biliary metabolite, is directly involved in small intestinal injury in rats. Gastroenterology 1998; 115:1476-82. [PMID: 9834275 DOI: 10.1016/s0016-5085(98)70026-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Enterohepatic recirculation of nonsteroidal anti-inflammatory drugs is a critical factor in the pathogenesis of intestinal injury, but the underlying mechanism of toxicity remains obscure. The aim of this study was to examine the role of diclofenac acyl glucuronide, which is the major biliary metabolite and is chemically reactive, in the precipitation of small intestinal ulceration. METHODS Hepatocanalicular conjugate export pump-deficient (TR-) rats were used to selectively block diclofenac enterohepatic circulation without interrupting bile flow. Bile from diclofenac-treated normal rats was orally transferred to wild-type and TR- rats, and the extent of ulcer formation was compared with that induced by control bile containing free diclofenac. The effect of induction of hepatic diclofenac glucuronosyltransferase on the severity of diclofenac-induced ulceration was also determined. RESULTS TR- rats were refractory to diclofenac given either intraperitoneally or perorally. However, transfer of bile containing diclofenac glucuronide significantly increased the extent of ulcer formation in both normal and TR- rats. Moreover, induction of glucuronosyltransferase aggravated intestinal ulceration. CONCLUSIONS The reactive acyl glucuronide of diclofenac, or the acyl glucuronide of one of its oxidative metabolites, is directly involved in the pathogenesis of small intestinal injury.
Collapse
Affiliation(s)
- S Seitz
- Institute of Toxicology, Swiss Federal Institute of Technology and University of Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|