1
|
Alves P, Simão AF, Graça MFP, Mariz MJ, Correia IJ, Ferreira P. Dextran-Based Injectable Hydrogel Composites for Bone Regeneration. Polymers (Basel) 2023; 15:4501. [PMID: 38231931 PMCID: PMC10707775 DOI: 10.3390/polym15234501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Currently, bone infections caused by diseases or injuries are a major health issue. In addition, the conventional therapeutic approaches used to treat bone diseases or injuries present several drawbacks. In the area of tissue engineering, researchers have been developing new alternative therapeutic approaches, such as scaffolds, to promote the regeneration of injured tissues. Despite the advantages of these materials, most of them require an invasive surgical procedure. To overcome these problems, the main focus of this work was to develop scaffolds for bone regeneration, which can be applied using injectable hydrogels that circumvent the use of invasive procedures, while allowing for bone regeneration. Throughout this work, injectable hydrogels were developed based on a natural polymer, dextran, along with the use of two inorganic compounds, calcium β-triphosphate and nanohydroxyapatite, that aimed to reinforce the mechanical properties of the 3D mesh. The materials were chemically characterized considering the requirements for the intended application: the swelling capacity was evaluated, the degradation rate in a simulated physiological environment was assessed, and compression tests were performed. Furthermore, vancomycin was incorporated into the polymeric matrices to obtain scaffolds with antibacterial performance, and their drug release profile was assessed. The cytotoxic profile of the hydrogels was assessed by an MTS assay, using osteoblasts as model cells. The data obtained demonstrated that dextran-based hydrogels were successfully synthesized, with a drug release profile with an initial burst between 50 and 80% of the drug. The hydrogels possess fair biocompatibility. The swelling capacity showed that the stability of the samples and their degradation profile is compatible with the average time period required for bone regeneration (usually about one month) and have a favorable Young's modulus (200-300 kPa). The obtained hydrogels are well-suited for bone regeneration applications such as infections that occur during implantation or bone graft substitutes with antibiotics.
Collapse
Affiliation(s)
- Patrícia Alves
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; (A.F.S.); (M.J.M.); (I.J.C.); (P.F.)
| | - Ana Filipa Simão
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; (A.F.S.); (M.J.M.); (I.J.C.); (P.F.)
| | - Mariana F. P. Graça
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
| | - Marcos J. Mariz
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; (A.F.S.); (M.J.M.); (I.J.C.); (P.F.)
| | - Ilídio J. Correia
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; (A.F.S.); (M.J.M.); (I.J.C.); (P.F.)
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
| | - Paula Ferreira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; (A.F.S.); (M.J.M.); (I.J.C.); (P.F.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| |
Collapse
|
2
|
Sundaran S, Kok LC, Chang HY. Fabrication and in vitroevaluation of photo cross-linkable silk fibroin-epsilon-poly-L-lysine hydrogel for wound repair. Biomed Mater 2023; 18:055021. [PMID: 37567188 DOI: 10.1088/1748-605x/acef86] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
An optimal wound-healing hydrogel requires effective antibacterial properties and a favorable cell adhesion and proliferation environment. AlthoughBombyx morisilk fibroin (SF) possesses inherent wound-healing properties, it lacks these essential qualities. This study aimed to fabricate a novel photo-polymerizable hydrogel by utilizing SF's wound-healing efficiency and the epsilon-poly-L-lysine (EPL) antimicrobial activity. The SF was modified with three different concentrations of glycidyl methacrylate (GMA) to obtain SF-GMA(L), SF-GMA(M), and SF-GMA(H). A methacrylated EPL (EPL-GMA) was also produced. Then, SF-GMA was mixed with EPL-GMA to produce photo-crosslinkable SF-GMA-EPL hydrogels. The SF-GMA(L)-EPL, SF-GMA(M)-EPL, and SF-GMA(H)-EPL hydrogels, fabricated with 20% EPL-GMA, demonstrated maximum antimicrobial activity and mammalian cell adhesion ability. The hydroxyl radical (•OH) scavenging efficiency of the hydrogels was tested and shown to be between 69% and 74%. These hydrogels also exhibited 60% efficiency in removing bacterial lipopolysaccharides. The water absorption ability of the hydrogels was consistent with the size of their internal pores. The hydrogels exhibited a slow degradation fashion, and their degradation products appeared cytocompatible. Finally, the elastomeric properties of the hydrogels were determined, and a storage modulus (G') of 300-600 Pa was demonstrated. In conclusion, the hydrogels created in this study possess excellent biological and physical properties to support wound healing.
Collapse
Affiliation(s)
- Sneha Sundaran
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Ching Kok
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| |
Collapse
|
3
|
Moorthy T, Hathim B M, NagaMahesh C H M, Anburaj G, Ahmed SSSJ, Gopinath V, Munuswamy-Ramanujam G, Rao SK, Kamath MS. Controlled release of kaempferol from porous scaffolds augments in-vitro osteogenesis in human osteoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Machowska A, Klara J, Ledwójcik G, Wójcik K, Dulińska-Litewka J, Karewicz A. Clindamycin-Loaded Halloysite Nanotubes as the Antibacterial Component of Composite Hydrogel for Bone Repair. Polymers (Basel) 2022; 14:polym14235151. [PMID: 36501546 PMCID: PMC9739121 DOI: 10.3390/polym14235151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
A new drug delivery system consisting of clindamycin phosphate entrapped in acid-etched halloysite nanotubes was successfully prepared and characterized. It was then used as an antibacterial component of the multicomponent hydrogel designed as a material for bone regeneration. First, halloysite (HNT) was etched and clindamycin phosphate (CP) was entrapped in both raw and modified nanotubes, resulting in HNT-CP and EHNT-CP systems. They were characterized using SEM, TEM, TGA and FTIR; the entrapment efficiency and release of CP from both systems were also studied. EHNT-CP was then used as an antibacterial component of the two hydrogels composed of alginate, collagen and β-TCP. The hydrogels were prepared using different crosslinking procedures but had the same composition. The morphology, porosity, degradation rate, CP release profile, cytocompatibility, antibacterial activity and ability to induce biomineralization were studied for both materials. The hydrogel obtained by a chemical crosslinking with EDC followed by the physical crosslinking with calcium ions had better properties and was shown to have potential as a bone repair material.
Collapse
Affiliation(s)
- Adrianna Machowska
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Joanna Klara
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Gabriela Ledwójcik
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Kraków, Poland
| | - Anna Karewicz
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence: ; Tel.: +48-12-686-25-33
| |
Collapse
|
5
|
Wu H, Lin K, Zhao C, Wang X. Silk fibroin scaffolds: A promising candidate for bone regeneration. Front Bioeng Biotechnol 2022; 10:1054379. [PMID: 36507269 PMCID: PMC9732393 DOI: 10.3389/fbioe.2022.1054379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
It remains a big challenge in clinical practice to repair large-sized bone defects and many factors limit the application of autografts and allografts, The application of exogenous scaffolds is an alternate strategy for bone regeneration, among which the silk fibroin (SF) scaffold is a promising candidate. Due to the advantages of excellent biocompatibility, satisfying mechanical property, controllable biodegradability and structural adjustability, SF scaffolds exhibit great potential in bone regeneration with the help of well-designed structures, bioactive components and functional surface modification. This review will summarize the cell and tissue interaction with SF scaffolds, techniques to fabricate SF-based scaffolds and modifications of SF scaffolds to enhance osteogenesis, which will provide a deep and comprehensive insight into SF scaffolds and inspire the design and fabrication of novel SF scaffolds for superior osteogenic performance. However, there still needs more comprehensive efforts to promote better clinical translation of SF scaffolds, including more experiments in big animal models and clinical trials. Furthermore, deeper investigations are also in demand to reveal the degradation and clearing mechanisms of SF scaffolds and evaluate the influence of degradation products.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| |
Collapse
|
6
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
7
|
Motasadizadeh H, Tavakoli M, Damoogh S, Mottaghitalab F, Gholami M, Atyabi F, Farokhi M, Dinarvand R. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. BIOMATERIALS ADVANCES 2022; 139:213032. [PMID: 35882123 DOI: 10.1016/j.bioadv.2022.213032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
For effective treatment of infected bone, it is essential to use local drug delivery systems with the ability to deliver both antibiotics and osteoinductive factors. Herein, a pH-sensitive silk fibroin (SF)/sodium alginate (SA) hydrogel scaffolds containing teicoplanin (TEC) and phenamil (PM) loaded SF nanoparticles (PMSFNPS) are introduced for treating chronic osteomyelitis. The TEC and PM showed a sustained- and pH-sensitive release behavior from SF/SA hydrogel. The higher release rate was seen in an alkaline pH in comparison to neutral and acidic pH during 10 days. The eluted TEC maintained its antibacterial activity of >75 % during 35 days and in three different pH values (5.5, 7.4, and 8.5). The cellular study indicated that the scaffolds containing PMSFNPs could promote the cell viability, ALP activity, and matrix mineralization. Moreover, the in vivo effectiveness of hydrogel scaffolds were analyzed with radiography, histological and Immunohistochemistry evaluations. The lower infection and higher regeneration were observed in methicillin-resistant Staphylococcus aureus (MRSA) infected rat bone treated with hydrogel scaffold containing PMSFNPs and TEC compared to other groups. Consequently, this dual-drug delivery system could be a hopeful approach for effective treatment of chronic bone infection.
Collapse
Affiliation(s)
- Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheyda Damoogh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
8
|
Ganjali F, Eivazzadeh-Keihan R, Aghamirza Moghim Aliabadi H, Maleki A, Pouri S, Ahangari Cohan R, Hashemi SM, Mahdavi M. Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
10
|
Antibacterial Electrospun Polycaprolactone Nanofibers Reinforced by Halloysite Nanotubes for Tissue Engineering. Polymers (Basel) 2022; 14:polym14040746. [PMID: 35215658 PMCID: PMC8876556 DOI: 10.3390/polym14040746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Due to its slow degradation rate, polycaprolactone (PCL) is frequently used in biomedical applications. This study deals with the development of antibacterial nanofibers based on PCL and halloysite nanotubes (HNTs). Thanks to a combination with HNTs, the prepared nanofibers can be used as low-cost nanocontainers for the encapsulation of a wide variety of substances, including drugs, enzymes, and DNA. In our work, HNTs were used as a nanocarrier for erythromycin (ERY) as a model antibacterial active compound with a wide range of antibacterial activity. Nanofibers based on PCL and HNT/ERY were prepared by electrospinning. The antibacterial activity was evaluated as a sterile zone of inhibition around the PCL nanofibers containing 7.0 wt.% HNT/ERY. The morphology was observed with SEM and TEM. The efficiency of HNT/ERY loading was evaluated with thermogravimetric analysis. It was found that the nanofibers exhibited outstanding antibacterial properties and inhibited both Gram- (Escherichia coli) and Gram+ (Staphylococcus aureus) bacteria. Moreover, a significant enhancement of mechanical properties was achieved. The potential uses of antibacterial, environmentally friendly, nontoxic, biodegradable PCL/HNT/ERY nanofiber materials are mainly in tissue engineering, wound healing, the prevention of bacterial infections, and other biomedical applications.
Collapse
|
11
|
Zuluaga-Vélez A, Quintero-Martinez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin nanocomposites as tissue engineering scaffolds - A systematic review. Biomed Pharmacother 2021; 141:111924. [PMID: 34328093 DOI: 10.1016/j.biopha.2021.111924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
12
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
13
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
14
|
Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111328. [DOI: 10.1016/j.msec.2020.111328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
|
15
|
Ifra, Singh A, Saha S. Shape Shifting of Cup Shaped Particles on Growing poly (2‐hydroxy ethyl methacrylate) Brushes by “Grafting From” Approach and Dissipative Particle Dynamics Simulation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ifra
- Department of Materials Science and EngineeringIndian Institute of Technology Delhi New Delhi India
| | - Awaneesh Singh
- Department of PhysicsIndian Institute of Technology (BHU) Varanasi India
| | - Sampa Saha
- Department of Materials Science and EngineeringIndian Institute of Technology Delhi New Delhi India
| |
Collapse
|
16
|
Khorshidi S, Karkhaneh A, Bonakdar S. Fabrication of amine‐decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen. J Biomed Mater Res A 2019; 108:136-147. [DOI: 10.1002/jbm.a.36799] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sajedeh Khorshidi
- Department of Biomedical EngineeringAmirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical EngineeringAmirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Shahin Bonakdar
- National Cell Bank DepartmentPasteur Institute of Iran Tehran Iran
| |
Collapse
|